Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 536: 109050, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38335804

ABSTRACT

Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 â†’ 2)(1 â†’ 3), (1 â†’ 2)(1 â†’ 5) and (1 â†’ 3)(1 â†’ 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 â†’ 2)(1 â†’ 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.


Subject(s)
Lectins , Mannans , Lectins/chemistry , Ligands , Concanavalin A/chemistry , Mannose/chemistry , Glycosides/chemistry , Oligosaccharides , Trisaccharides , Protein Binding
3.
Chembiochem ; 22(21): 3075-3081, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34375491

ABSTRACT

Glycovesicles are ideal tools to delineate finer mechanisms of the interactions at the biological cell membranes. Multivalency forms the basis which, in turn, should surpass more than one mechanism in order to maintain multiple roles that the ligand-lectin interactions encounter. Ligand densities hold a prime control to attenuate the interactions. In the present study, mannose trisaccharide interacting with a cognate receptor, namely, Con A, is assessed at the vesicle surface. Synthetic (1→3)(1→6)-branched mannose trisaccharides tethered with a diacetylene monomer and glycovesicles of varying sugar densities were prepared. The polydiacetylene vesicles were prepared by maintaining uniform lipid concentrations. The interactions of the glycovesicles with the lectin were probed through dynamic light scattering and UV-Vis spectroscopy techniques. Binding efficacies were assessed by surface plasmon resonance. Aggregative and in-plane modes of interactions show ligand-density dependence at the vesicle surface. Vesicles with sparsely populated ligands engage lectin in an aggregative mode (trans-), leading to a cross-linked complex formation. Whereas glycovesicles embedded with dense ligands engage lectin interaction in an in-plane mode intramolecularly (cis-). Sub-nanomolar dissociation constants govern the intramolecular interaction occurring within the plane of the vesicle, and are more efficacious than the aggregative intermolecular interactions.


Subject(s)
Concanavalin A/chemistry , Mannose/chemistry , Oligosaccharides/chemistry , Mannose/chemical synthesis , Molecular Structure , Oligosaccharides/chemical synthesis
4.
Chembiochem ; 22(3): 485-490, 2021 02 02.
Article in English | MEDLINE | ID: mdl-32926592

ABSTRACT

Carbohydrate-protein interactions define a multitude of cellular recognition events. We present herein synthetic glycovesicles as cell-surface mimics in order to switch the nature of lectin recognition. The covalent glycovesicles, constituted with diacetylene monomers of various ligand densities at their surfaces, are prepared through photo-polymerization. Vesicles with sparsely imbedded ligands engage in a lectin interaction leading to the formation of a dense, crosslinked multimeric complex. On the other hand, vesicles with many ligands, or completely covered with them, switch the lectin interaction to form a fully soluble monomeric complex, without crosslinking. Nanomolar dissociation constants govern these interactions, as assessed by a ligand-displacement assay. The study demonstrates the switching nature - between monomeric and multimeric - of the interaction as a function of ligand density in the vesicles; the results are directly relevant to understanding such a phenomenon occurring at cell surfaces.


Subject(s)
Glycosides/chemistry , Lectins/analysis , B-Lymphocytes/chemistry , Glycosides/chemical synthesis , Humans , Ligands , Molecular Structure , Surface Properties
5.
J Biol Chem ; 295(34): 12111-12129, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32636304

ABSTRACT

N-Linked glycans are critical to the infection cycle of HIV, and most neutralizing antibodies target the high-mannose glycans found on the surface envelope glycoprotein-120 (gp120). Carbohydrate-binding proteins, particularly mannose-binding lectins, have also been shown to bind these glycans. Despite their therapeutic potency, their ability to cause lymphocyte proliferation limits their application. In this study, we report one such lectin named horcolin (Hordeum vulgare lectin), seen to lack mitogenicity owing to the divergence in the residues at its carbohydrate-binding sites, which makes it a promising candidate for exploration as an anti-HIV agent. Extensive isothermal titration calorimetry experiments reveal that the lectin was sensitive to the length and branching of mannooligosaccharides and thereby the total valency. Modeling and simulation studies demonstrate two distinct modes of binding, a monovalent binding to shorter saccharides and a bivalent mode for higher glycans, involving simultaneous interactions of multiple glycan arms with the primary carbohydrate-binding sites. This multivalent mode of binding was further strengthened by interactions of core mannosyl residues with a secondary conserved site on the protein, leading to an exponential increase in affinity. Finally, we confirmed the interaction of horcolin with recombinant gp120 and gp140 with high affinity and inhibition of HIV infection at nanomolar concentrations without mitogenicity.


Subject(s)
HIV Envelope Protein gp120/chemistry , HIV Infections , HIV-1/chemistry , Hordeum/chemistry , Mannose/chemistry , Plant Lectins/chemistry , Polysaccharides/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Animals , HEK293 Cells , HIV-1/metabolism , Hordeum/genetics , Humans , Male , Mice , Plant Lectins/genetics , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...