Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Metab Brain Dis ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727934

ABSTRACT

Aging is a multifaceted and progressive physiological change of the organism categorized by the accumulation of deteriorating processes, which ultimately compromise the biological functions. The objective of this study was to investigate the anti-aging potential of berberine (BBR) in D-galactose (D-Gal) induced aging in rat models. In this study, male Wistar rats were divided into four groups: The control group was given only vehicle, the BBR group was treated with berberine orally, the D-Gal group was treated with D-galactose subcutaneously and the BBR + D-Gal group was treated with D-galactose and berberine simultaneously. D-galactose exposure elevated the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl and advanced oxidation protein products (AOPP) in the brain. It decreased the anti-oxidants such as reduced glutathione (GSH) and ferric reducing antioxidant potential (FRAP) in the brain. D-galactose treatment also reduced the mitochondrial complexes (I, II, III and IV) activities and elevated the inflammatory markers such as interleukine-6 (IL-6), tumor necrosis factor- α (TNF-α) and C-reactive protein (CRP). The mRNA expressions of IL-6 and TNF-α in the brain were upregulated following D-galactose exposure. Berberine co-treatment in D-galactose induced aging rat model prevented the alteration of pro-oxidant and anti-oxidant in the brain. Berberine treatment restored the mitochondrial complex activities in the brain and also normalized the inflammatory markers. Based on these findings we conclude that berberine treatment has the potential to mitigate brain aging in rats via stabilizing the redox equilibrium and neuroinflammation.

2.
Mol Biol Rep ; 51(1): 694, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796662

ABSTRACT

BACKGROUND: Curcumin (Curcuma longa) is a well-known medicinal plant that induces autophagy in various model species, helping maintain cellular homeostasis. Its role as a caloric restriction mimetic (CRM) is being investigated. This study explores the potential of curcumin (CUR), as a CRM, to provide neuroprotection in D galactose induced accelerated senescence model of rats through modulation of autophagy. For six weeks, male rats received simultaneous supplementation of D-gal (300 mg/kg b.w., subcutaneously) and CUR (200 mg/kg b.w., oral). METHOD AND RESULTS: The oxidative stress indices, antioxidants, and electron transport chain complexes in brain tissues were measured using standard methods. Reverse transcriptase-polymerase chain reaction (RT-PCR) gene expression analysis was used to evaluate the expression of autophagy, neuroprotection, and aging marker genes. Our results show that curcumin significantly (p ≤ 0.05) enhanced the level of antioxidants and considerably lowered the level of oxidative stress markers. Supplementing with CUR also increased the activity of electron transport chain complexes in the mitochondria of aged brain tissue, demonstrating the antioxidant potential of CUR at the mitochondrial level. CUR was found to upregulate the expression of the aging marker gene (SIRT-1) and the genes associated with autophagy (Beclin-1 and ULK-1), as well as neuroprotection (NSE) in the brain. The expression of IL-6 and TNF-α was downregulated. CONCLUSION: Our findings demonstrate that CUR suppresses oxidative damage brought on by aging by modulating autophagy. These findings imply that curcumin might be beneficial for neuroprotection in aging and age-related disorders.


Subject(s)
Aging , Antioxidants , Autophagy , Brain , Curcumin , Oxidative Stress , Animals , Curcumin/pharmacology , Autophagy/drug effects , Oxidative Stress/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Rats , Aging/drug effects , Male , Antioxidants/pharmacology , Neuroprotective Agents/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Galactose/pharmacology , Sirtuin 1/metabolism , Sirtuin 1/genetics , Beclin-1/metabolism , Beclin-1/genetics
3.
Rejuvenation Res ; 26(4): 139-146, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37166369

ABSTRACT

Acarbose (ACA), a well-studied and effective inhibitor of α-amylase and α-glucosidase, is a postprandial-acting antidiabetic medicine. The membrane of the erythrocyte is an excellent tool for analyzing different physiological and biochemical activities since it experiences a range of metabolic alterations throughout aging. It is uncertain if ACA modulates erythrocyte membrane activities in an age-dependent manner. As a result, the current study was conducted to explore the influence of ACA on age-dependent deteriorated functions of transporters/exchangers, disrupted levels of various biomarkers such as lipid hydroperoxides (LHs), protein carbonyl (PCO), sialic acid (SA), total thiol (-SH), and erythrocyte membrane osmotic fragility. In addition to a concurrent increase in Na+/H+ exchanger activity and concentration of LH, PCO, and osmotic fragility, we also detected a considerable decrease in membrane-linked activities of Ca2+-ATPase (PMCA) and Na+/K+-ATPase (NKA), as well as concentrations of SA and -SH in old-aged rats. The aging-induced impairment of the activities of membrane-bound ATPases and the changed levels of redox biomarkers were shown to be effectively restored by ACA treatment.


Subject(s)
Acarbose , Aging , Erythrocyte Membrane , Glycoside Hydrolase Inhibitors , Plasma Membrane Calcium-Transporting ATPases , Sodium-Potassium-Exchanging ATPase , Acarbose/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/enzymology , Aging/drug effects , Aging/metabolism , Lipid Peroxides/analysis , Sialic Acids/analysis , Protein Carbonylation/drug effects , Sulfhydryl Compounds/analysis , Osmotic Fragility/drug effects , Animals , Rats , Male , Rats, Wistar , Plasma Membrane Calcium-Transporting ATPases/analysis , Plasma Membrane Calcium-Transporting ATPases/metabolism , Sodium-Potassium-Exchanging ATPase/analysis , Sodium-Potassium-Exchanging ATPase/metabolism , Oxidation-Reduction/drug effects , Biomarkers/analysis , Biomarkers/metabolism
4.
Z Naturforsch C J Biosci ; 78(7-8): 307-315, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37053568

ABSTRACT

Aging is a natural phenomenon, which is characterised by progressive physiological changes at cellular and organ level. During aging, the defence mechanism of an organism declines over the period of time. The aim of this study was to investigate the biological efficacy of berberine in D-galactose induced aging rat models. For the study, rats were divided into four groups: Control received only vehicle, BBR received berberine orally, D-Gal received D-galactose subcutaneously and BBR + D-Gal received D-galactose and berberine simultaneously. D-galactose treatment increased the pro-oxidants such as malondialdehyde (MDA) level, protein carbonyl, plasma membrane redox system (PMRS) and advanced oxidation protein products (AOPP) in the erythrocytes or plasma. It reduced the anti-oxidant level such as reduced glutathione (GSH), ferric reducing ability of plasma (FRAP), plasma thiols, sialic acid and membrane transporters like Na+/K+ ATPase and Ca2+ ATPase activity in the erythrocyte membrane. Co-treatment of berberine in D-galactose induced aging rat models restored pro-oxidants and anti-oxidants in erythrocytes. Berberine also restored the activity of Na+/K+ ATPase and Ca2+ ATPase in the erythrocyte membrane. On the basis of these findings, we suggest that berberine treatment could attenuate erythrocyte aging in rats through stabilisation of the redox equilibrium.


Subject(s)
Berberine , Oxidative Stress , Rats , Animals , Berberine/pharmacology , Reactive Oxygen Species/metabolism , Galactose , Oxidation-Reduction , Antioxidants/pharmacology , Adenosine Triphosphatases/metabolism , Malondialdehyde/metabolism
5.
Rejuvenation Res ; 26(1): 21-31, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36524249

ABSTRACT

Increasing age is the single largest risk factor for a variety of chronic illnesses. As a result, improving the capability to target the aging process leads to an increased health span. A lack of appropriate glucoregulatory control is a recurring issue associated with aging and chronic illness, even though many longevity therapies result in the preservation of glucoregulatory control. In this study, we suggest that targeting glucose metabolism to improve regulatory control can help slow the aging process. Male Wistar rats, both young (age 4 months) and old (age 24 months), were given acarbose (ACA) (30 mg/kg b.w.) for 6 weeks. An array of oxidative stress indicators was assessed after the treatment period, including plasma antioxidant capacity as determined by the ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), lipid peroxidation (malondialdehyde [MDA]), reduced glutathione (GSH), total plasma thiol (sulfhydryl [SH]), plasma membrane redox system (PMRS), protein carbonyl (PCO), advanced oxidation protein products (AOPPs), advanced glycation end products (AGEs), and sialic acid (SA) in control and treated groups. When compared with controls, ACA administration increased FRAP, GSH, SH, and PMRS activities in both age groups. The treated groups, on the contrary, showed substantial decreases in ROS, MDA, PCO, AOPP, AGE, and SA levels. The effect of ACA on almost all parameters was more evident in old-age rats. ACA significantly increased PMRS activity in young rats; here the effect was less prominent in old rats. Our data support the restoration of antioxidant levels in older rats after short-term ACA treatment. The findings corroborate the potential role of ACA as a putative calorie restriction mimetic.


Subject(s)
Acarbose , Antioxidants , Rats , Male , Animals , Antioxidants/pharmacology , Acarbose/pharmacology , Acarbose/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/metabolism , Reactive Oxygen Species/metabolism , Rats, Wistar , Oxidation-Reduction , Oxidative Stress , Glutathione/metabolism , Erythrocytes , Homeostasis , Glucose/metabolism
6.
Food Chem Toxicol ; 155: 112433, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34302886

ABSTRACT

The present study was undertaken to evaluate the mechanism for antiParkinsonian effect of resveratrol employing 6-hydroxydopamine (6-OHDA) induced experimental model of Parkinson's disease (PD). Resveratrol treatment significantly protects the PD related pathological markers like level of tyrosine hydroxylase, dopamine and apoptotic proteins (Bax and cleaved caspase-3). Disease pathology involves significantly decreased level of dopamine transporter, synaptophysin and postsynaptic density protein 95 (PSD-95) along with augmented level of vesicular monoamine transporter and considerably affected the dendrite arborization. Such affected neuronal communication was significantly restored with resveratrol treatment. Biochemical alterations include the depleted level of glutathione (GSH), mitochondrial complex-I activity with concomitant increased level of lipid peroxidation, nitrite level and calcium levels, which were also significantly inhibited with resveratrol treatment. Altered calcium level induces the endoplasmic reticulum (ER) stress related signalling and phosphorylated Nuclear factor erythroid 2-related factor 2 (Nrf2), and with resveratrol treatment the level of phosphorylated Nrf2 was further increased. The concurrent depleted level of proteasome activity was observed which was attenuated with resveratrol treatment. Proinflammatory cytokines and activated astrocytes were observed which was inhibited with resveratrol treatment. In conclusion, findings suggested that resveratrol exhibits the interference in neuronal communication, oxidative stress, mitochondrial pathophysiology, ER stress, protein degradation mechanism and inflammatory responses and could be utilize in clinics to treat the PD patients.


Subject(s)
Antiparkinson Agents/therapeutic use , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Neuronal Plasticity/drug effects , Parkinson Disease, Secondary/drug therapy , Resveratrol/therapeutic use , Animals , Dendrites/drug effects , Disks Large Homolog 4 Protein/metabolism , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Neuroprotective Agents/therapeutic use , Oxidopamine , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/metabolism , Rats, Sprague-Dawley , Synaptophysin/metabolism , Vesicular Monoamine Transport Proteins/metabolism
7.
Neurochem Res ; 45(8): 1731-1745, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32462543

ABSTRACT

Parkinson's disease (PD) is a slow progressive, second most common neurodegenerative disease characterized by the loss of dopaminergic neurons from the nigrostriatal pathway. In spite of extensive research the therapeutics options of disease are limited which only offer symptomatic relief and could not prevent the disease progression. Therefore researchers are looking for the probable synthetic or natural compounds for the PD therapeutics. Due to mandatory chronic consumption of anti PD drug to the PD patients, the natural compounds are getting attention recently. Numerous studies have indicated the neuroprotective effects of natural polyphenols including epigallocatechin, quercetin, baicalein, resveratrol, luteolin, curcumin, puerarin, genistein, hyperoside naringin against dopaminergic neuronal death with relatively safe with uncommon, mild or transient side effects. However, their mechanistic interference in dopaminergic neuronal death mechanism is not very well defined. Herein, we have attempted to discuss the various natural polyphenols with their known effects on various PD related pathologies to understand their therapeutic utilization for PD patients either in prophylactic or therapeutic mode. Briefly we have also discussed the major disease mechanisms which could be targeted for utilization of these polyphenols specifically involving oxidative stress and mitochondrial dysfunction. We have also discuss the limitation and probable strategies for the clinical utilization of these polyphenols for the benefit of PD patients.


Subject(s)
Antioxidants/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , Polyphenols/therapeutic use , Animals , Brain/drug effects , Cell Line, Tumor , Humans
8.
Pestic Biochem Physiol ; 153: 106-115, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30744883

ABSTRACT

Paraquat (PQ) is a herbicide and well characterized pneumotoxicant which is also known to induce neurodegeneration in organisms. Aim of this study was to investigate the effect of PQ on hypothalamic - pituitary - adrenal (HPA) axis. PQ was administered i.p.10 mg/kg body weight once a week for 5 weeks in laboratory male mice. Results indicate that SOD activity decreased while catalase activity and nitrate-nitrite level increased significantly in the hypothalamus of PQ treated mice. The expression of both AVP and CRH mRNA in the hypothalamus as well as ir-AVP and ir-CRH increased in the PVN of PQ treated mice compared to control. Immunoreactivity of nNOS and Hsp70 including NF-κB mRNA expression increased in the PVN of PQ treated mice. As expected, serum corticosterone level was also elevated significantly in the herbicide PQ treated mice. From these findings it is concluded that paraquat treatment is capable of activating the HPA axis via upregulating transcription and translation of the hypothalamic neuropeptides AVP and CRH as well as serum corticosterone level. Increase in both oxidative and nitrosative stress in PQ treated mice might be the driver which also contributed to the activation of HPA axis. It seems that stress induced reactive species (ROS, RNS) might be also responsible for the induced expression of NF-κB mRNA and Hsp70 protein which are considered as the reliable markers of certain types of stressors including PQ toxicity.


Subject(s)
Herbicides/toxicity , Hypothalamo-Hypophyseal System/drug effects , Paraquat/toxicity , Pituitary-Adrenal System/drug effects , Stress, Physiological/drug effects , Animals , Arginine Vasopressin/genetics , Corticosterone/blood , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Mice
9.
Neurochem Int ; 104: 64-79, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28011166

ABSTRACT

Chronic hyperglycemia (glucotoxicity) is reported to have detrimental effects on various brain functions leading to neurodegenerative changes. However, the effect of hyperglycemia in combination with high nitric oxide (NO) level (reported to be increased during glucotoxicity), on brain functions is not clear yet. The present study was designed to investigate the effects of hyperglycemic drug Streptozotocin (STZ) and NO donor Sodium nitroprusside (SNP) on the brain of laboratory mouse, Mus musculus. Effects of these conditions were studied on the markers of oxidative stress, NF-κB signalling and the markers of neuronal and glial cell activation/inflammation. Results indicate increased level of MDA and altered antioxidant enzymes activity in both the treated groups compared to control but high levels of AGEs, AOPP and AR activity (markers of diabetic complications) were observed in STZ group only. On the other hand, while STZ group showed decreased IL-6 level, it was increased in SNP group but IFN-ϒ level increased in both the treated groups compared to control. Further, in addition to alterations in the expressions of iNOS, IKKß, IKBα and NF-κB subunits (RelA-p65/RelB-p50) observed in the neurons and glial cells of different brain regions (hypothalamus, basolateral amygdala and cerebral cortex), enhanced expression of microglial CD11b and astrocytic GFAP was also found in both the treated groups compared to control. Present findings led us to conclude that both hyperglycemia and high NO level causes oxidative stress in addition to molecular alteration in the neurons and glial cells. It is suggested that high blood glucose and NO level induced oxidative stress may lead to neuroinflammation possibly via NF-κB signalling.


Subject(s)
Hyperglycemia/metabolism , Neuroglia/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/pharmacology , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Female , Mice , NF-kappa B/metabolism
10.
Gen Comp Endocrinol ; 239: 13-20, 2016 12 01.
Article in English | MEDLINE | ID: mdl-26965951

ABSTRACT

Neurohypophyseal hormone, arginine vasopressin (AVP), in addition to acting as antidiuretic hormone is also considered to be stress hormone like hypothalamic corticotropin-releasing hormone (CRH). Present study was designed to investigate the relative response of these stress hormones during water and food deprivation. In this study, male laboratory mice of Swiss strain were divided in 5 groups, control - provided water and food ad libitum, two experimental groups water deprived for 2 and 4days respectively (WD2 and WD4) and another two groups food deprived for 2 and 4days respectively (FD2 and FD4). Results indicate an increased expression of AVP mRNA as well as peptide in the hypothalamus of WD2 mice and the expression was further upregulated after 4days of water deprivation but the expression of CRH remained unchanged compare to their respective controls. On the other hand no change was observed in the expression of hypothalamic AVP mRNA while AVP peptide increased significantly in FD2 and FD4 mice compare to control. Further, the expression of CRH mRNA although increased in hypothalamus of both FD2 and FD4 mice, the immunofluorescent staining shows decreased expression of CRH in PVN of food deprived mice. Based on these findings it is concluded that since during osmotic stress only AVP expression is upregulated but during metabolic stress i.e. food deprivation transcription and translation of both the stress hormones are differentially regulated. Further, it is suggested that role of AVP and CRH may be stress specific.


Subject(s)
Arginine Vasopressin/metabolism , Corticotropin-Releasing Hormone/metabolism , Food Deprivation/physiology , Hypothalamus/metabolism , Water Deprivation/physiology , Animals , Arginine Vasopressin/genetics , Corticosterone/blood , Corticotropin-Releasing Hormone/genetics , Male , Mice , Paraventricular Hypothalamic Nucleus/metabolism , RNA, Messenger/metabolism , Stress, Physiological/genetics , Vasopressins/metabolism , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...