Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(41): 7468-7479, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36099554

ABSTRACT

We present a viable protocol to compute vibrational resonance Raman (vRR) spectra for systems with several close-lying and potentially coupled electronic states. It is based on the parametrization of linear vibronic coupling (LVC) models from time-dependent density functional theory (TD-DFT) calculations and quantum dynamics propagations of vibronic wavepackets with the multilayer version of the multiconfiguration time-dependent Hartree (ML-MCTDH) method. Our approach is applied to thymine considering seven coupled electronic states, comprising the three lowest bright states, and all vibrational coordinates. Computed vRR at different excitation wavelengths are in good agreement with the available experimental data. Up to 250 nm the signal is dominated by the lowest HOMO → LUMO transition, whereas at 233 nm, in the valley between the two lowest energy absorption bands, the contributions of all the three bright states, and their interferences and couplings, are important. Inclusion of solvent (water) effects improves the agreement with experiment, reproducing the coalescence of vibrational bands due to CC and C═O stretchings. With our approach we disentangle and assess the effect of interferences between the contribution of different quasi-resonant states to the transition polarizability and the effect of interstate couplings. Our findings strongly suggest that in cases of close-lying and potentially coupled states a simple inclusion of interference effects is not sufficient, and a fully nonadiabatic computation should instead be performed. We also document that for systems with strong couplings and quasi-degenerate states, the use of HT perturbative approach, not designed for these cases, may lead to large artifacts.


Subject(s)
Quantum Theory , Thymine , Vibration , Solvents , Water
2.
J Chem Theory Comput ; 17(8): 4660-4674, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34270258

ABSTRACT

We introduce a method (FrD-LVC) based on a fragment diabatization (FrD) for the parametrization of a linear vibronic coupling (LVC) model suitable for studying the photophysics of multichromophore systems. In combination with effective quantum dynamics (QD) propagations with multilayer multiconfigurational time-dependent Hartree (ML-MCTDH), the FrD-LVC approach gives access to the study of the competition between intrachromophore decays, like those at conical intersections, and interchromophore processes, like exciton localization/delocalization and the involvement of charge-transfer (CT) states. We used FrD-LVC parametrized with time-dependent density functional theory (TD-DFT) calculations, adopting either CAM-B3LYP or ωB97X-D functionals, to study the ultrafast photoexcited QD of a guanine-cytosine (GC) hydrogen-bonded pair, within a Watson-Crick arrangement, considering up to 12 coupled diabatic electronic states and the effect of all of the 99 vibrational coordinates. The bright excited states localized on C and, especially, on G are predicted to be strongly coupled to the G → C CT state, which is efficiently and quickly populated after an excitation to any of the four lowest energy bright local excited states. Our QD simulations show that more than 80% of the excited population on G and ∼50% of that on C decay to this CT state in less than 50 fs. We investigate the role of vibronic effects in the population of the CT state and show that it depends mainly on its large reorganization energy so that it can occur even when it is significantly less stable than the bright states in the Franck-Condon region. At the same time, we document that the formation of the GC pair almost suppresses the involvement of dark nπ* excited states in the photoactivated dynamics.


Subject(s)
Cytosine/chemistry , Guanine/chemistry , Base Pairing , Cytosine/metabolism , Density Functional Theory , Guanine/metabolism , Hydrogen Bonding
3.
J Chem Phys ; 154(10): 104106, 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33722019

ABSTRACT

With this work, we present a protocol for the parameterization of a Linear Vibronic Coupling (LVC) Hamiltonian for quantum dynamics using highly accurate multiconfigurational electronic structure methods such as RASPT2/RASSCF, combined with a maximum-overlap diabatization technique. Our approach is fully portable and can be applied to many medium-size rigid molecules whose excited state dynamics requires a quantum description. We present our model and discuss the details of the electronic structure calculations needed for the parameterization, analyzing critical situations that could arise in the case of strongly interacting excited states. The protocol was applied to the simulation of the excited state dynamics of the pyrene molecule, starting from either the first or the second bright state (S2 or S5). The LVC model was benchmarked against state-of-the-art quantum mechanical calculations with optimizations and energy scans and turned out to be very accurate. The dynamics simulations, performed including all active normal coordinates with the multilayer multiconfigurational time-dependent Hartree method, show good agreement with the available experimental data, endorsing prediction of the excited state mechanism, especially for S5, whose ultrafast deactivation mechanism was not yet clearly understood.

4.
Phys Chem Chem Phys ; 22(45): 26525-26535, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33188675

ABSTRACT

We study the ultrafast dynamics of 1,5-dimethyl-cytosine, a model for 5-methyl-cytidine, after photoexcitation to the first two bright ππ* states, focusing on the possible population transfer to dark nπ* states. To that end we propagate the initial wave packets on the coupled potential energy surfaces of the seven lowest energy excited states modelled with a diabatic linear vibronic coupling (LVC) model, considering all the vibrational coordinates. Time-evolution is computed by the multilayer version of the multiconfigurational time dependent Hartree (ML-MCTDH) method. The LVC Hamiltonian is parametrized with time-dependent density functional theory (TD-DFT) calculations adopting PBE0 and CAM-B3LYP functionals, which provide a different energy gap between the lowest energy nπ* states and the spectroscopic ππ* state. Population of the lowest ππ* flows to a dark nπ* state which involves a lone pair (LP) of the carbonyl oxygen (nOπ*), but the extent of such transfer is much larger according to PBE0 than to CAM-B3LYP. Photoexcitation to the second bright state gives rise to much richer dynamics with an ultrafast (50 fs) complete decay to the lowest ππ*, to nOπ* and to another nπ* in which the excited electron comes from the LP of the ring nitrogen. We perform a detailed analysis of the vibronic dynamics both in terms of normal modes and valence coordinates (bond lengths and angles). The comparison with the analogous dynamics in 1-methyl-cytosine, a model for cytidine, provides insights into the effect of methylation at carbon 5 on the electronic and nuclear dynamics.


Subject(s)
Cytosine/chemistry , Gases/chemistry , Models, Chemical , Cytidine/analogs & derivatives , Cytidine/chemistry , Electrons , Epigenesis, Genetic , Light , Spectrum Analysis , Vibration
5.
J Chem Theory Comput ; 16(9): 5792-5808, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32687360

ABSTRACT

The nonadiabatic quantum dynamics (QD) of cytosine and 1-methylcytosine in the gas phase is simulated for 250 fs after a photoexcitation to one of the first two bright states. The nuclear wavepacket is propagated on the coupled diabatic potential energy surfaces of the lowest seven excited states, including ππ*, nπ*, and Rydberg states along all the vibrational degrees of freedom. We focus in particular on the interplay between the bright and the dark nπ* states, not considering the decay to the ground electronic state. To run these simulations, we implemented an automatic general procedure to parametrize linear vibronic coupling (LVC) models with time-dependent density functional theory (DFT) computations and interfaced it with Gaussian package. The wavepacket was propagated with the multilayer version of the multiconfigurational time dependent Hartree method. Two different density functionals, PBE0 and CAM-B3LYP, which provide a different description of the relative stability of the lowest energy dark states, were used to parametrize the LVC Hamiltonian. Part of the photoexcited population on lowest HOMO-LUMO transition (πHπL*) decays within less than 100 fs to a nπ* state which mainly involves a promotion of an electron from the oxygen lone pair to the LUMO (nOπL*). The population of the second ππ* state decays almost completely, in <100 fs, not only to πHπL* and to nOπL* states but also to another nπL* state involving the nitrogen lone pair. The efficiency of the adopted protocol allowed us to check the accuracy of the predictions by repeating the QD simulations with different LVC Hamiltonians parametrized either at the ground-state minimum or at stationary structures of different relevant excited states.

SELECTION OF CITATIONS
SEARCH DETAIL
...