Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 23(20): 9212-9218, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37788809

ABSTRACT

Optically dark excitons determine a wide range of properties of photoexcited semiconductors yet are hard to access via conventional time-resolved spectroscopies. Here, we develop a time-resolved ultrafast photocurrent technique (trPC) to probe the formation dynamics of optically dark excitons. The nonlinear nature of the trPC makes it particularly sensitive to the formation of excitons occurring at the femtosecond time scale after the excitation. As a proof of principle, we extract the interlayer exciton formation time of 0.4 ps at 160 µJ/cm2 fluence in a MoS2/MoSe2 heterostructure and show that this time decreases with fluence. In addition, our approach provides access to the dynamics of carriers and their interlayer transport. Overall, our work establishes trPC as a technique to study dark excitons in various systems that are hard to probe by other approaches.

2.
Nat Commun ; 13(1): 7691, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36509779

ABSTRACT

Mechanical strain is a powerful tuning knob for excitons, Coulomb-bound electron-hole complexes dominating optical properties of two-dimensional semiconductors. While the strain response of bright free excitons is broadly understood, the behaviour of dark free excitons (long-lived excitations that generally do not couple to light due to spin and momentum conservation) or localized excitons related to defects remains mostly unexplored. Here, we study the strain behaviour of these fragile many-body states on pristine suspended WSe2 kept at cryogenic temperatures. We find that under the application of strain, dark and localized excitons in monolayer WSe2-a prototypical 2D semiconductor-are brought into energetic resonance, forming a new hybrid state that inherits the properties of the constituent species. The characteristics of the hybridized state, including an order-of-magnitude enhanced light/matter coupling, avoided-crossing energy shifts, and strain tunability of many-body interactions, are all supported by first-principles calculations. The hybridized excitons reported here may play a critical role in the operation of single quantum emitters based on WSe2. Furthermore, the techniques we developed may be used to fingerprint unidentified excitonic states.

3.
Nano Lett ; 22(20): 8037-8044, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36252952

ABSTRACT

We introduce a nanomechanical platform for fast and sensitive measurements of the spectrally resolved optical dielectric function of 2D materials. At the heart of our approach is a suspended 2D material integrated into a high Q silicon nitride nanomechanical resonator illuminated by a wavelength-tunable laser source. From the heating-related frequency shift of the resonator as well as its optical reflection measured as a function of photon energy, we obtain the real and imaginary parts of the dielectric function. Our measurements are unaffected by substrate-related screening and do not require any assumptions on the underling optical constants. This fast (τrise ∼ 135 ns), sensitive (noise-equivalent power = 90⁣pW√Hz), and broadband (1.2-3.1 eV, extendable to UV-THz) method provides an attractive alternative to spectroscopic or ellipsometric characterization techniques.

4.
Nano Lett ; 21(17): 7123-7130, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34410727

ABSTRACT

The coupled spin and valley degrees of freedom in transition metal dichalcogenides (TMDs) are considered a promising platform for information processing. Here, we use a TMD heterostructure MoS2-MoSe2 to study optical pumping of spin/valley polarized carriers across the interface and to elucidate the mechanisms governing their subsequent relaxation. By applying time-resolved Kerr and reflectivity spectroscopies, we find that the photoexcited carriers conserve their spin for both tunneling directions across the interface. Following this, we measure dramatically different spin/valley depolarization rates for electrons and holes, ∼30 and <1 ns-1, respectively, and show that this difference relates to the disparity in the spin-orbit splitting in conduction and valence bands of TMDs. Our work provides insights into the spin/valley dynamics of photoexcited carriers unaffected by complex excitonic processes and establishes TMD heterostructures as generators of spin currents in spin/valleytronic devices.

5.
Nat Commun ; 9(1): 5392, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30568184

ABSTRACT

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moiré minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...