Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Toxicol Pathol ; 65(6): 789-97, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23276622

ABSTRACT

Busulfan, an antineoplastic bifunctional-alkylating agent, is known to induce developmental anomalies and fetal neurotoxicity. We previously reported that busulfan induced p53-dependent neural progenitor cell apoptosis in fetal rat brain (Ohira et al., 2012). The present study was carried out to clarify the characteristics and sequence of busulfan-induced pathological changes in infant rat brain. Six-day-old male infant rats were treated with 10, 20, 30 or 50 mg/kg of busulfan, and their brains were examined at 1, 2, 4, 7, and 14 days after treatment (DAT). As a result, histopathological changes were selectively detected in the external granular layer (EGL), deep cerebellar nuclei (DCN) and cerebellar white matter (CWM) in the cerebellum with dose-dependent severity but not in the cerebrum. In the normal infant rat cerebellum, granular cells in the EGL were proliferating and moving to the internal granular layer during the normal developmental process. In the EGL of the busulfan group, apoptotic granular cells increased at 2 DAT simultaneously with increased numbers of p53- and p21-positive cells while mitotic granular cells decreased, suggesting an occurrence of p53-related apoptosis and depression of proliferative activity in granular cells. In the DCN, apoptotic glial cells increased at 2 DAT and glial cells showing abnormal mitosis increased at 4 DAT. In the CWN, edematous change accompanying a few apoptotic cells was found in the CWN, especially in the parafolliculus (PFL), from 2 to 7 DAT. The present study demonstrated for the first time the characteristics and sequence of busulfan-induced pathological changes in infant rat cerebellum.


Subject(s)
Antineoplastic Agents, Alkylating/toxicity , Apoptosis/drug effects , Busulfan/toxicity , Cell Proliferation/drug effects , Cerebellum/drug effects , DNA Fragmentation/drug effects , Animals , Animals, Newborn , Cerebellum/growth & development , Cerebellum/pathology , Dose-Response Relationship, Drug , Immunohistochemistry , In Situ Nick-End Labeling , Male , Rats , Rats, Wistar , Time Factors
2.
J Toxicol Pathol ; 22(2): 125-31, 2009 Jun.
Article in English | MEDLINE | ID: mdl-22271985

ABSTRACT

In this study, we investigated the sequential changes in the development of renal tubular cysts in newborn rats treated with p-cumylphenol (PCP). Fifteen animals per sex were treated orally with 300 mg/kg/day of PCP for up to 18 days from postnatal day (PND) 4 and were sacrificed on PNDs 8, 12, 19 and 22 and after a 7 day recovery period. On PNDs 8 and 12, slight dilatation of the collecting ducts was frequently observed in the medulla and slight papillary necrosis was also noted in some cases. These dilated collecting ducts were lined with slightly hyperplastic epithelial cells. On PNDs 19 and 22, multiple large cystic changes arising from the collecting ducts in the outer medulla were seen. These cystically dilated ducts were also lined with hyperplastic epithelial cells. During the dosing period, the labeling index of proliferating cell nuclear antigen in the collecting duct epithelium was higher in the PCP-treated group than in the control group at all time points. After a 7 day recovery period, the cystic change still remained, although the cell density was decreased and the epithelial cells became flattened. On the other hand, basophilic tubules with peritubular lymphoid cell infiltration were multifocally observed in the cortex. In conclusion, PCP induced multiple renal cysts that developed in the collecting ducts of the outer medulla in neonatal rats, and it is suggested that epithelial cell proliferation may play some roles in the induction of cystic lesions.

3.
Appl Environ Microbiol ; 69(9): 5336-42, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12957921

ABSTRACT

Tetracycline-resistant (Tet(r)) bacteria were isolated from fishes collected at three different fish farms in the southern part of Japan in August and September 2000. Of the 66 Tet(r) gram-negative strains, 29 were identified as carrying tetB only. Four carried tetY, and another four carried tetD. Three strains carried tetC, two strains carried tetB and tetY, and one strain carried tetC and tetG. Sequence analyses indicated the identity in Tet(r) genes between the fish farm bacteria and clinical bacteria: 99.3 to 99.9% for tetB, 98.2 to 100% for tetC, 99.7 to 100% for tetD, 92.0 to 96.2% for tetG, and 97.1 to 100% for tetY. Eleven of the Tet(r) strains transferred Tet(r) genes by conjugation to Escherichia coli HB-101. All transconjugants were resistant to tetracycline, oxycycline, doxycycline, and minocycline. The donors included strains of Photobacterium, Vibrio, Pseudomonas, Alteromonas, Citrobacter, and Salmonella spp., and they transferred tetB, tetY, or tetD to the recipients. Because NaCl enhanced their growth, these Tet(r) strains, except for the Pseudomonas, Citrobacter, and Salmonella strains, were recognized as marine bacteria. Our results suggest that tet genes from fish farm bacteria have the same origins as those from clinical strains.


Subject(s)
Bacteria/genetics , Fish Diseases/microbiology , Fishes/microbiology , Tetracycline Resistance/genetics , Animals , Bacteria/drug effects , Bacteria/growth & development , Bacteria/isolation & purification , Base Sequence , Conjugation, Genetic , DNA Primers , Fisheries , Microbial Sensitivity Tests , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Sodium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...