Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 257(Pt 1): 128642, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061517

ABSTRACT

In this work, we describe the synthesis, interactions with bovine serum albumin, and cytotoxicity of new ionic liquids based on 5-fluorouracil (API-ILs) with different cations (imidazolium, choline, isoquinolinium, guanidinium). The secondary and tertiary structure of BSA in solutions with different concentrations of API-ILs was monitored by the circular dichroism (CD) technique. The addition of API-ILs does not lead to structural changes in BSA. A quenching of fluorescence spectra intensity of BSA in presence of all API-ILs was observed, allowing the quantification of binding between API-ILs and BSA. The preferred localization of both ions in API-ILs differs significantly depending on the structure of the cation according to molecular docking. The aggregation of BSA in presence of API-ILs was analyzed by the dynamic light scattering (DLS) method, revealing a moderate increase in particle size. Cytotoxicity and selectivity of API-ILs on cancer and normal cell lines were estimated, showing a clear modification of the pharmaceutic activity of ionic liquid compared to 5-fluorouracil.


Subject(s)
Ionic Liquids , Ionic Liquids/chemistry , Molecular Docking Simulation , Fluorouracil/pharmacology , Serum Albumin, Bovine/chemistry , Cations
2.
Chempluschem ; 88(8): e202300251, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37525541

ABSTRACT

The reaction of cyclopentaphosphine cyclo-(P5 Ph5 ) (1) with ketones (acetone and cyclooctanone) in the presence of [Mo(CO)4 (cod)] (cod=cycloocta-1,5-diene) led to air-stable trinuclear complexes in which the bis-phosphanido ligands (PPh-PPh-PPh-PPh-CMe2 O-PPh)2- (complex 2) and (PPh-PPh-PPh-PPh-C(CH2 )7 O-PPh)2- (complex 3) bridge a Mo(CO)3 -Mo(CO)3 unit. This extends the reaction of 1 with transition metal carbonyl complexes to further substrates and represents the first examples of insertion of carbonyl compounds into the P-P bond of cyclic oligophosphorus compounds. Complexes 2 and 3 have been characterized by 31 P NMR spectroscopy and single crystal X-ray diffraction. Furthermore, the thermal properties of the obtained complexes have been studied by differential scanning calorimetry (DSC) and fast scanning calorimetry (FSC).

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903703

ABSTRACT

Two-dimensional black phosphorus (BP) has emerged as a perspective material for various micro- and opto-electronic, energy, catalytic, and biomedical applications. Chemical functionalization of black phosphorus nanosheets (BPNS) is an important pathway for the preparation of materials with improved ambient stability and enhanced physical properties. Currently, the covalent functionalization of BPNS with highly reactive intermediates, such as carbon-free radicals or nitrenes, has been widely implemented to modify the material's surface. However, it should be noted that this field requires more in-depth research and new developments. Herein, we report for the first time the covalent carbene functionalization of BPNS using dichlorocarbene as a functionalizing agent. The P-C bond formation in the obtained material (BP-CCl2) has been confirmed by Raman, solid-state 31P NMR, IR, and X-ray photoelectron spectroscopy methods. The BP-CCl2 nanosheets exhibit an enhanced electrocatalytic hydrogen evolution reaction (HER) performance with an overpotential of 442 mV at -1 mA cm-2 and a Tafel slope of 120 mV dec-1, outperforming the pristine BPNS.

4.
Int J Mol Sci ; 24(4)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36834502

ABSTRACT

Two-dimensional black phosphorus (BP) has attracted great attention as a perspective material for various applications. The chemical functionalization of BP is an important pathway for the preparation of materials with improved stability and enhanced intrinsic electronic properties. Currently, most of the methods for BP functionalization with organic substrates require either the use of low-stable precursors of highly reactive intermediates or the use of difficult-to-manufacture and flammable BP intercalates. Herein we report a facile route for simultaneous electrochemical exfoliation and methylation of BP. Conducting the cathodic exfoliation of BP in the presence of iodomethane makes it possible to generate highly active methyl radicals, which readily react with the electrode's surface yielding the functionalized material. The covalent functionalization of BP nanosheets with the P-C bond formation has been proven by various microscopic and spectroscopic methods. The functionalization degree estimated by solid-state 31P NMR spectroscopy analysis reached 9.7%.


Subject(s)
Commerce , Protein Processing, Post-Translational , Methylation , Electrodes , Phosphorus
5.
Angew Chem Int Ed Engl ; 61(47): e202210973, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36200566

ABSTRACT

Transition-metal mediated white phosphorus activation is of high interest as an ecological alternative to P4 chlorination pathway to the practically useful phosphorus products. Herein, we report a facile approach for P4 activation, transformation and subsequent functionalization using cobalt complexes bearing PNP ligands. The use of N,N-bis(diphenylphosphino)amine as a ligand allows one to transform P4 tetrahedron into a zig-zag chain with the formation of complex [Co(Ph2 PNHP(Ph2 )PPPPP(Ph2 )NHPPh2 )]BF4 (4). The presence of organic substituent at nitrogen atom in PNP ligand enables one to obtain complexes with η1 -coordinated P4 molecule, which indicates a crucial role of N-H bond in transformation of white phosphorus tetrahedron. Additionally, complex 4 can readily be functionalized by means of the reaction with Ph2 PCl leading to the formation of a new complex bearing unique P9 -ligand. The obtained results provide opportunities for facile construction of new polyphosphorus ligands in the coordination sphere of transition metal complexes.

6.
Molecules ; 26(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34500716

ABSTRACT

This review is a comprehensive account of reactions with the participation of nickel complexes that result in the formation of carbon-phosphorus (C‒P) bonds. The catalytic and non-catalytic reactions with the participation of nickel complexes as the catalysts and the reagents are described. The various classes of starting compounds and the products formed are discussed individually. The several putative mechanisms of the nickel catalysed reactions are also included, thereby providing insights into both the synthetic and the mechanistic aspects of this phosphorus chemistry.

7.
Molecules ; 26(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34279402

ABSTRACT

Pincer complexes play an important role in organometallic chemistry; in particular, their use as homogeneous catalysts for organic transformations has increased dramatically in recent years. The high catalytic activity of such bis-cyclometallic complexes is associated with the easy tunability of their properties. Moreover, the phosphorus-based unsymmetrical pincers showed higher catalytic activity than the corresponding symmetrical analogues in several catalytic reactions. However, in modern literature, an increasing interest in the development of catalysts based on non-precious metals is observed. For example, nickel, which is an affordable and sustainable analogue of platinum and palladium, known for its low toxicity, has attracted increasing attention in the catalytic chemistry of transition metals in recent years. Thus, this mini-review is devoted to the recent advances in the chemistry of unsymmetrical phosphorus-based pincer nickel complexes, including the ligand design, the synthesis of nickel complexes and their catalytic applications.

8.
Molecules ; 26(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494201

ABSTRACT

Reaction of heterometallic cubane-type cluster complexes-[Mo3{Pd(dba)}S4Cl3(dbbpy)3]PF6, [Mo3{Pd(tu)}S4Cl3(dbbpy)3]Cl and [Mo3{Pd(dba)}S4(acac)3(py)3]PF6, where dba-dibenzylideneacetone, dbbpy-4,4'-di-tert-butyl-2,2'-bipyridine, tu-thiourea, acac-acetylacetonate, py-pyridine, with white phosphorus (P4) in the presence of water leads to the formation of phosphorous acid H3PO3 as the major product. The crucial role of the Pd atom in the cluster core {Mo3PdS4} has been established in the hydrolytic activation of P4 molecule. The main intermediate of the process, the cluster complex [Mo3{PdP(OH)3}S4Cl3(dbbpy)3]+ with coordinated P(OH)3 molecule and phosphine PH3, have been detected by 31P NMR spectroscopy in the reaction mixture.


Subject(s)
Molybdenum/chemistry , Organometallic Compounds/chemistry , Palladium/chemistry , Phosphorus/chemistry , Hydrolysis
9.
Polymers (Basel) ; 12(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977659

ABSTRACT

This paper addresses a review of platinum-based hydrosilylation catalysts. The main field of application of these catalysts is the curing of silicone polymers. Since the 1960s, this area has developed rapidly in connection with the emergence of new polymer compositions and new areas of application. Here we describe general mechanisms of the catalyst activity and the structural effects of the ligands on activity and stability of the catalysts together with the methods for their synthesis.

10.
Chempluschem ; 85(5): 958-962, 2020 05.
Article in English | MEDLINE | ID: mdl-32412179

ABSTRACT

Reaction of the electrochemically in situ from elemental white phosphorus generated phosphine oxide H3 PO in a single electrochemical cell, supplied with lead cathode and aluminium anode, with cyclic ketones (cyclopentanone and cyclohexanone) results in formation of secondary phosphine oxides (bis(α-hydroxycyclopentyl)phosphine oxide 2 a, isolated yield 15 %, and bis(α-hydroxycyclohexyl)phosphine oxide 2 b, isolated yield 12 %) with two α-hydroxycycloalkyl substituents at the phosphorus atom. Bis(α-hydroxycyclopentyl)phosphine oxide reacts with [PdCl2 (COD)] (COD=1,5-cyclooctadiene) to give a new palladium complex trans-[PdCl2 {P(OH)(cyclo-C5 H8 -1-OH)2 }2 ] (3 a, isolated yield 11 %) bearing phosphinous acid as a ligand formed via tautomerization of the phosphine oxide. Finally, the cytotoxicity of the synthesized secondary phosphine oxides on tumor and healthy human cell lines was studied. It was found that at a concentration of 10-6 -10-4  M, phosphine oxides 2 a,b exhibit similar IC50 values for the M-Hela cell line (ca. 50 mM), but are non-toxic for MCF-7 cells. For human alveolar adenocarcinoma cells (A-549), only 2 a is active (ca. 35 mM), while 2 b is not toxic.


Subject(s)
Phosphines/chemistry , Phosphorus/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray , HeLa Cells , Humans , Hydrogen Bonding , Ligands , Molecular Conformation , Oxides/chemistry , Palladium/chemistry , Phosphines/chemical synthesis , Phosphorus Acids/chemistry
11.
Chemistry ; 25(42): 9920-9929, 2019 Jul 25.
Article in English | MEDLINE | ID: mdl-31090244

ABSTRACT

The hydrogenolysis of mono- and dinuclear PdII hydroxides was investigated both experimentally and computationally. It was found that the dinuclear µ-hydroxide complexes {[(PCNR )Pd]2 (µ-OH)}(OTf) (PCNH =1-[3-[(di-tert-butylphosphino)methyl]phenyl]-1H-pyrazole; PCNMe =1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) react with H2 to form the analogous dinuclear hydride species {[(PCNR )Pd]2 (µ-H)}(OTf). The dinuclear µ-hydride complexes were fully characterized, and are rare examples of structurally characterized unsupported singly bridged µ-H PdII dimers. The {[(PCNMe )Pd]2 (µ-OH)}(OTf) hydrogenolysis mechanism was investigated through experiments and computations. The hydrogenolysis of the mononuclear complex (PCNH )Pd-OH resulted in a mixed ligand dinuclear species [(PCNH )Pd](µ-H)[(PCC)Pd] (PCC=a dianionic version of PCNH bound through phosphorus P, aryl C, and pyrazole C atoms) generated from initial ligand "rollover" C-H activation. Further exposure to H2 yields the bisphosphine Pd0 complex Pd[(H)PCNH ]2 . When the ligand was protected at the pyrazole 5-position in the (PCNMe )Pd-OH complex, no hydride formed under the same conditions; the reaction proceeded directly to the bisphosphine Pd0 complex Pd[(H)PCNMe ]2 . Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric hydroxides are proposed.

12.
ACS Appl Mater Interfaces ; 8(44): 30099-30106, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27768269

ABSTRACT

This paper describes the exohedral N-decoration of multiwalled carbon nanotubes (MWCNTs) with NH-aziridine groups via [2 + 1] cycloaddition of a tert-butyl-oxycarbonyl nitrene followed by controlled thermal decomposition of the cyclization product. The chemical grafting with N-containing groups deeply modifies the properties of the starting MWCNTs, generating new surface microenvironments with specific base (Brønsted) and electronic properties. Both of these features translate into a highly versatile single-phase heterogeneous catalyst (MW@NAz) with remarkable chemical and electrochemical performance. Its surface base character promotes the Knoevenagel condensation with activity superior to that of related state of the art N-doped and N-decorated carbon nanomaterials; the N-induced electronic surface redistribution drives the generation of high-energy surface "C" sites suitable for O2 activation and its subsequent electrochemical reduction (ORR).

13.
Phys Chem Chem Phys ; 17(10): 6976-87, 2015 Mar 14.
Article in English | MEDLINE | ID: mdl-25683906

ABSTRACT

The aim of this work is to convince practitioners of (31)P NMR methods to regard simple GIAO quantum chemical calculations as a safe tool in structural analysis of organophosphorus compounds. A comparative analysis of calculated GIAO versus experimental (31)P NMR chemical shifts (CSs) for a wide range of phosphorus containing model compounds was carried out. A variety of combinations (at the HF, DFT (B3LYP and PBE1PBE), and MP2 levels using 6-31G(d), 6-31+G(d), 6-31G(2d), 6-31G(d,p), 6-31+G(d,p), 6-311G(d), 6-311G(2d,2p), 6-311++G(d,p), 6-311++G(2d,2p), and 6-311++G(3df,3pd) basis sets) were tested. On the whole, it is shown that, in contrast to what is claimed in the literature, high level of theory is not needed to obtain rather accurate predictions of (31)P CSs by the GIAO method. The PBE1PBE/6-31G(d)//PBE1PBE/6-31G(d) level can be recommended for express estimation of (31)P CSs. The PBE1PBE/6-31G(2d)//PBE1PBE/6-31G(d) combination can be recommended for routine applications. The PBE1PBE/6-311G(2d,2p)//PBE1PBE/6-31+G(d) level can be proposed to obtain better results at a reasonable cost. Scaling by linear regression parameters significantly improves results. The results obtained using these combinations were demonstrated in (31)P CS calculations for a variety of medium (large) size organic compounds of practical interest. Care has to be taken for compounds that may be involved in exchange between different structural forms (self-associates, associates with solvent, tautomers, and conformers). For phosphorus located near the atoms of third period elements ((CH3)3PS and P(SCH3)3) the impact of relativistic effects may be notable.

14.
Beilstein J Org Chem ; 10: 1121-8, 2014.
Article in English | MEDLINE | ID: mdl-24991262

ABSTRACT

An easy, high-yield and atom-economic procedure of a C60 fullerene modification using a reaction of fullerene C60 with N-alkylisatins in the presence of tris(diethylamino)phosphine to form novel long-chain alkylindolinone-substituted methanofullerenes (AIMs) is described. Optical absorption, electrochemical properties and solubility of AIMs were studied. Poly(3-hexylthiophene-2,5-diyl) (P3HT)/AIMs solar cells were fabricated and the effect of the AIM alkyl chain length and the P3HT:AIM ratio on the solar cell performance was studied. The power conversion efficiencies of about 2% were measured in the P3HT/AIM devices with 1:0.4 P3HT:AIM weight ratio for the AIMs with hexadecyl and dodecyl substituents. From the optical and AFM data, we suggested that the AIMs, in contrast to [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), do not disturb the P3HT crystalline domains. Moreover, the more soluble AIMs do not show a better miscibility with the P3HT crystalline phase.

16.
Inorg Chem ; 50(10): 4553-8, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21476589

ABSTRACT

The reaction of [NiBr(2)(bpy)(2)] (bpy = 2,2'-bipyridine) with organic phosphinic acids ArP(O)(OH)H [Ar = Ph, 2,4,6-trimethylphenyl (Mes), 9-anthryl (Ant)] leads to the formation of binuclear nickel(II) complexes with bridging ArP(H)O(2)(-) ligands. Crystal structures of the binuclear complexes [Ni(2)(µ-O(2)P(H)Ar)(2)(bpy)(4)]Br(2) (Ar = Ph, Mes, Ant) have been determined. In each structure, the metal ions have distorted octahedral coordination and are doubly bridged by two arylphosphinato ligands. Magnetic susceptibility measurements have shown that these complexes display strong antiferromagnetic coupling between the two nickel atoms at low temperatures, apparently similar to binuclear nickel(II) complexes with bridging carboxylato ligands. Cyclic voltammetry and in situ EPR spectroelectrochemistry show that these complexes can be electrochemically reduced and oxidized with the formation of Ni(I),Ni(0)/Ni(III) derivatives.

17.
J Org Chem ; 76(8): 2548-57, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21391680

ABSTRACT

The reactions of such cyclic α-diketones as acenaphthenequinone, aceanthrenequinone, and N-alkylisatins, with hexaethyltriaminophosphine in the presence of the fullerene C(60), lead to the formation of methanofullerene derivatives under mild conditions. This process proceeds via deoxygenation of the dicarbonyl compound by the P(III) derivative and is likely to involve the intermediate formation of α-ketocarbenes. The structure of some methanofullerenes has been confirmed by NMR and XRD. The electrochemical behavior of the methanofullerenes was also investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...