Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Front Pharmacol ; 14: 1229255, 2023.
Article in English | MEDLINE | ID: mdl-37954838

ABSTRACT

Introduction: Dapagliflozin-induced improvement of glycemic control in patients with inadequately controlled type 1 diabetes (T1D) is complicated by the delicate balance between blood glucose and exogenous insulin. In this work, we developed a semi-mechanistic population exposure-response model using pooled patient-level data to characterize the joint effect of dapagliflozin and insulin on average daily glucose concentrations and glycated hemoglobin (HbA1c) levels in patients with T1D. Methods: A non-linear mixed-effects model was developed in Monolix (Lixoft, France) and R software (R Project, www.r-project.org) using pooled patient-level data from phase 2 and phase 3 trials (NCT01498185, NCT02460978, NCT02268214). Results: Because of the apparent lack of association between bolus insulin dose and glucose concentrations measured by continuous glucose monitoring the model was able to capture the quantitative link between basal, but not bolus, insulin dose and plasma glucose. Even so, this association remained flat, with a 50% decrease in the basal insulin dose from pretreatment level, resulting in ∼5% increase in glucose exposure. Therefore, dapagliflozin efficacy was not significantly affected by the insulin dose adjustment, with 24-week HbA1c reduction on 10-mg dapagliflozin treatment changing from -0.5 [95% CI: -0.55, -0.45] to -0.42 [95%CI: -0.48, -0.36] after adjustment. At the same time, the analysis revealed ∼2-fold steeper slope of glucose-HbA1c relationship in dapagliflozin-treated patients vs. control group, suggesting the presence of additional dapagliflozin treatment-related benefits, not explained by the dapagliflozin-mediated ∼4% increase in plasma hemoglobin levels. Finally, the efficacy of 5 and 10-mg doses, represented by the mean HbA1c reduction at week 24 of dapagliflozin treatment, was shown to be notably greater than the 1- and 2.5-mg doses. Discussion: This research is an attempt to deconvolute and reconstruct dapagliflozin-HbA1c dose-response relationship in T1D by accounting for the drug's action on both daily insulin dose and plasma glucose on a subject-level. While the model is able to adequately capture the observed data, it also revealed that the variability in CGM is poorly approximated by the variability in insulin dose alone. Furthermore, the slope of CGM/HbA1c relationship may differ depending on the population and treatment scenarios. As such, a deeper dive into the physiological mechanisms is required to better quantify the intricate network of glycemic response under dapagliflozin treatment.

2.
CPT Pharmacometrics Syst Pharmacol ; 12(6): 831-841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36912425

ABSTRACT

Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by abnormally high blood glucose concentrations due to dysfunction of the insulin-producing beta-cells in the pancreas. Dapagliflozin, an inhibitor of renal glucose reabsorption, has the potential to improve often suboptimal glycemic control in patients with T1DM through insulin-independent mechanisms and to partially mitigate the adverse effects associated with long-term insulin administration. In this work, we have adapted a systems pharmacology model of type 2 diabetes mellitus to describe the T1DM condition and characterize the effect of dapagliflozin on short- and long-term glycemic markers under various treatment scenarios. The developed platform serves as a quantitative tool for the in silico evaluation of the insulin-glucose-dapagliflozin crosstalk, optimization of the treatment regimens, and it can be further expanded to include additional therapies or other aspects of the disease.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Blood Glucose , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2/therapeutic use , Glucose/therapeutic use , Insulin
3.
J Pharmacokinet Pharmacodyn ; 49(4): 397-400, 2022 08.
Article in English | MEDLINE | ID: mdl-35474412

ABSTRACT

Pharmacometrics is a constantly evolving field that plays a major role in decision making in drug development and clinical monitoring. Scientists in Pharmacometrics, especially in their early phases of career, are often faced with the challenge of identifying adequate resources for self-training and education. Hence, the ISoP Education Committee through its working group dedicated to Central Indexing and knowledge Dissemination has built a database of worldwide educational programs and most common references in Pharmacometrics.

4.
Mol Cytogenet ; 14(1): 11, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596973

ABSTRACT

BACKGROUND: Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. RESULTS: Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal-20 in each cell line-DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. CONCLUSION: DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.

5.
Diabetes Obes Metab ; 23(4): 991-1000, 2021 04.
Article in English | MEDLINE | ID: mdl-33368935

ABSTRACT

AIMS: To develop a quantitative systems pharmacology model to describe the effect of dapagliflozin (a sodium-glucose co-transporter-2 [SGLT2] inhibitor) on glucose-insulin dynamics in type 2 diabetes mellitus (T2DM) patients, and to identify key determinants of treatment-mediated glycated haemoglobin (HbA1c) reduction. MATERIALS AND METHODS: Glycaemic control during dapagliflozin treatment was mechanistically characterized by integrating components representing dapagliflozin pharmacokinetics (PK), glucose-insulin homeostasis, renal glucose reabsorption, and HbA1c formation. The model was developed using PK variables, glucose, plasma insulin, and urinary glucose excretion (UGE) from a phase IIa dapagliflozin trial in patients with T2DM (NCT00162305). The model was used to predict dapagliflozin-induced HbA1c reduction; model predictions were compared to actual data from phase III trials (NCT00528879, NCT00683878, NCT00680745 and NCT00673231). RESULTS: The integrated glucose-insulin-dapagliflozin model successfully described plasma glucose and insulin levels, as well as UGE in response to oral glucose tolerance tests and meal intake. HbA1c reduction was also well predicted. The results show that dapagliflozin-mediated glycaemic control is anticorrelated to steady-state insulin concentration and insulin sensitivity. CONCLUSIONS: The developed model framework is the first to integrate SGLT2 inhibitor mechanism of action with both short-term glucose-insulin dynamics and long-term glucose control (HbA1c). The results suggest that dapagliflozin treatment is beneficial in patients with inadequate glycaemic control from insulin alone and this benefit increases as insulin control diminishes.


Subject(s)
Diabetes Mellitus, Type 2 , Benzhydryl Compounds , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Glucose , Glucosides , Humans , Hypoglycemic Agents/therapeutic use , Insulin , Treatment Outcome
6.
Front Cell Dev Biol ; 9: 795798, 2021.
Article in English | MEDLINE | ID: mdl-35071236

ABSTRACT

By crossing septin7-floxed mice with Lyz2-Cre mice carrying the Cre recombinase inserted in the Lysozyme-M (Lyz2) gene locus we aimed the specific deletion of septin7 in myeloid cells, such as monocytes, macrophages and granulocytes. Septin7 flox/flox :Lyz2-Cre mice show no alterations in the myeloid compartment. Septin7-deleted macrophages (BMDMs) were isolated and analyzed. The lack of Septin7 expression was confirmed and a constitutive double-nucleation was detected in Septin7-deficient BMDMs indicating a defect in macrophage cytokinesis. However, phagocytic function of macrophages as judged by uptake of labelled E. coli particles and LPS-stimulated macrophage activation as judged by induction of TNF mRNA expression and TNF secretion were not compromised. In addition to myeloid cells, Lyz2-Cre is also active in type II pneumocytes (AT2 cells). We monitored lung adenocarcinoma formation in these mice by crossing them with the conditional knock-in Kras-LSL-G12D allele. Interestingly, we found that control mice without septin7 depletion die after 3-5 weeks, while the Septin7-deficient animals survived 11 weeks or even longer. Control mice sacrificed in the age of 4 weeks display a bronchiolo-alveolar hyperplasia with multiple adenomas, whereas the Septin7-deficient animals of the same age are normal or show only a weak multifocal brochiolo-alveolar hyperplasia. Our findings indicate an essential role of Septin7 in macrophage cytokinesis but not in macrophage function. Furthermore, septin7 seems absolutely essential for oncogenic Kras-driven lung tumorigenesis making it a potential target for anti-tumor interventions.

7.
CPT Pharmacometrics Syst Pharmacol ; 9(4): 222-229, 2020 04.
Article in English | MEDLINE | ID: mdl-32064793

ABSTRACT

The aim of this research was to differentiate dapagliflozin, empagliflozin, and canagliflozin based on their capacity to inhibit sodium-glucose cotransporter (SGLT) 1 and 2 in patients with type 2 diabetes using a previously developed quantitative systems pharmacology model of renal glucose filtration, reabsorption, and excretion. The analysis was based on pooled, mean study-level data on 24-hour urinary glucose excretion, average daily plasma glucose, and estimated glomerular filtration rate collected from phase I and II clinical trials of SGLT2 inhibitors. Variations in filtered glucose across clinical studies were shown to drive the apparent differences in the glucosuria dose-response relationships among the gliflozins. A normalized dose-response analysis demonstrated similarity of dapagliflozin and empagliflozin, but not canagliflozin. At approved doses, SGLT1 inhibition by canagliflozin but not dapagliflozin or empagliflozin contributed to ~ 10% of daily urinary glucose excretion.


Subject(s)
Benzhydryl Compounds/pharmacology , Canagliflozin/pharmacology , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Benzhydryl Compounds/administration & dosage , Blood Glucose/drug effects , Canagliflozin/administration & dosage , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Diabetes Mellitus, Type 2/drug therapy , Dose-Response Relationship, Drug , Glomerular Filtration Rate , Glucosides/administration & dosage , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Models, Biological , Sodium-Glucose Transporter 1/antagonists & inhibitors , Systems Biology
8.
ScientificWorldJournal ; 2020: 8407872, 2020.
Article in English | MEDLINE | ID: mdl-32095119

ABSTRACT

This paper analyzes a case with the patient having focal structural epilepsy by processing electroencephalogram (EEG) fragments containing the "sharp wave" pattern of brain activity. EEG signals were recorded using 21 channels. Based on the fact that EEG signals are time series, an approach has been developed for their analysis using nonlinear dynamics tools: calculating the Lyapunov exponent's spectrum, multiscale entropy, and Lempel-Ziv complexity. The calculation of the first Lyapunov exponent is carried out by three methods: Wolf, Rosenstein, and Sano-Sawada, to obtain reliable results. The seven Lyapunov exponent spectra are calculated by the Sano-Sawada method. For the observed patient, studies showed that with medical treatment, his condition did not improve, and as a result, it was recommended to switch from conservative treatment to surgical. The obtained results of the patient's EEG study using the indicated nonlinear dynamics methods are in good agreement with the medical report and MRI data. The approach developed for the analysis of EEG signals by nonlinear dynamics methods can be applied for early detection of structural changes.


Subject(s)
Algorithms , Electroencephalography , Epilepsies, Partial/diagnosis , Epilepsies, Partial/physiopathology , Nonlinear Dynamics , Signal Processing, Computer-Assisted , Data Analysis , Electroencephalography/methods , Humans , Magnetic Resonance Imaging
9.
J Immunol ; 203(8): 2291-2300, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31527197

ABSTRACT

Tristetraprolin (TTP) is an RNA-binding protein and an essential factor of posttranscriptional repression of cytokine biosynthesis in macrophages. Its activity is temporally inhibited by LPS-induced p38MAPK/MAPKAPK2/3-mediated phosphorylation, leading to a rapid increase in cytokine expression. We compared TTP expression and cytokine production in mouse bone marrow-derived macrophages of different genotypes: wild type, MAPKAP kinase 2 (MK2) deletion (MK2 knockout [KO]), MK2/3 double deletion (MK2/3 double KO [DKO]), TTP-S52A-S178A (TTPaa) knock-in, as well as combined MK2 KO/TTPaa and MK2/3 DKO/TTPaa. The comparisons reveal that MK2/3 are the only LPS-induced kinases for S52 and S178 of TTP and the role of MK2 and MK3 in the regulation of TNF biosynthesis is not restricted to phosphorylation of TTP at S52/S178 but includes independent processes, which could involve other TTP phosphorylations (such as S316) or other substrates of MK2/3 or p38MAPK Furthermore, we found differences in the dependence of various cytokines on the cooperation between MK2/3 deletion and TTP mutation ex vivo. In the cecal ligation and puncture model of systemic inflammation, a dramatic decrease of cytokine production in MK2/3 DKO, TTPaa, and DKO/TTPaa mice compared with wild-type animals is observed, thus confirming the role of the MK2/3/TTP signaling axis in cytokine production also in vivo. These findings improve our understanding of this signaling axis and could be of future relevance in the treatment of inflammation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytokines/biosynthesis , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Intracellular Signaling Peptides and Proteins/deficiency , Mice , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/deficiency
10.
Diabetes Obes Metab ; 21(12): 2684-2693, 2019 12.
Article in English | MEDLINE | ID: mdl-31423699

ABSTRACT

AIM: To develop a quantitative drug-disease systems model to investigate the paradox that sodium-glucose co-transporter (SGLT)2 is responsible for >80% of proximal tubule glucose reabsorption, yet SGLT2 inhibitor treatment results in only 30% to 50% less reabsorption in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: A physiologically based four-compartment model of renal glucose filtration, reabsorption and excretion via SGLT1 and SGLT2 was developed as a system of ordinary differential equations using R/IQRtools. SGLT2 inhibitor pharmacokinetics and pharmacodynamics were estimated from published concentration-time profiles in plasma and urine and from urinary glucose excretion (UGE) in healthy people and people with T2DM. RESULTS: The final model showed that higher renal glucose reabsorption in people with T2DM versus healthy people was associated with 54% and 28% greater transporter capacity for SGLT1 and SGLT2, respectively. Additionally, the analysis showed that UGE is highly dependent on mean plasma glucose and estimated glomerular filtration rate (eGFR) and that their consideration is critical for interpreting clinical UGE findings. CONCLUSIONS: Quantitative drug-disease system modelling revealed mechanistic differences in renal glucose reabsorption and UGE between healthy people and those with T2DM, and clearly showed that SGLT2 inhibition significantly increased glucose available to SGLT1 downstream in the tubule. Importantly, we found that the findings of lower than expected UGE with SGLT2 inhibition are explained by the shift to SGLT1, which recovered additional glucose (~30% of total).


Subject(s)
Diabetes Mellitus, Type 2 , Glycosuria , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/urine , Glycosuria/metabolism , Glycosuria/urine , Humans , Kidney/drug effects , Kidney/metabolism , Models, Biological , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
11.
Open Access Maced J Med Sci ; 7(11): 1867-1872, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31316675

ABSTRACT

AIM: Evaluation of the impact of climatic factors on the formation of mortality due to circulatory diseases and a group of diseases related to alcohol consumption identified as alcohol-dependent. METHODS: The study subject was the adult population residing in different climatic zones of Russia: in the second, third and fourth zones, with different conditions: average annual temperature (5.2°C; 1-2°C; -2.0°C), snow cover duration (≤ 150 days, ≤ 180 days, ≈ 220 days) sunshine duration and the presence of polar night and polar day in the territory of the fourth climatic zone. The assessment "impact-case of death" was carried out by calculating the standardized incidence ratio (SIR) with 95% confidence intervals (CI) for circulatory system diseases (CSD) and alcohol-dependent diseases (ADD) in accordance with the international classification of diseases (ICD-X). RESULTS: The SIR of death from alcohol-dependent diseases for the female population in the 4th climatic zone (Murmansk Region) was the highest: the SIR of death from ADD 1.87; 95% CI (1.5-2.7), the SIR of death from CSD 1.3; 95% CI (1.2-2.3). For the female population in the 3rd climatic zone (Novosibirsk Region), the SIR of death has amounted to: SIRADD 1.52; 95% CI (1.2-1.87), SIRCSD 1.14; 95 CI (1.01-1.3). Living in the 3rd climatic zone was not so important for the health of the male population: the SIR of death from CSD 1.1; 95% CI (1.05-1.13); the SIR of death from ADD 0.8; 95% CI (0.65-0.98). However, living in the 4th climatic zone (Murmansk Region) poses a higher risk of death for the male population: SIRCSD 1.22 (22.0%); 95% CI (1.02-3.95); SIRADD 1.45 (45.0%); 95% CI (0.98-2.1). CONCLUSION: Living in high northern latitudes contributes to higher levels of mortality, both female and male, from circulatory and alcohol-dependent diseases.

12.
CPT Pharmacometrics Syst Pharmacol ; 8(6): 380-395, 2019 06.
Article in English | MEDLINE | ID: mdl-31087533

ABSTRACT

Quantitative systems pharmacology (QSP), a mechanistically oriented form of drug and disease modeling, seeks to address a diverse set of problems in the discovery and development of therapies. These problems bring a considerable amount of variability and uncertainty inherent in the nonclinical and clinical data. Likewise, the available modeling techniques and related software tools are manifold. Appropriately, the development, qualification, application, and impact of QSP models have been similarly varied. In this review, we describe the progressive maturation of a QSP modeling workflow: a necessary step for the efficient, reproducible development and qualification of QSP models, which themselves are highly iterative and evolutive. Furthermore, we describe three applications of QSP to impact drug development; one supporting new indications for an approved antidiabetic clinical asset through mechanistic hypothesis generation, one highlighting efficacy and safety differentiation within the sodium-glucose cotransporter-2 inhibitor drug class, and one enabling rational selection of immuno-oncology drug combinations.


Subject(s)
Hypoglycemic Agents/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Systems Biology/methods , Drug Development , Humans , Pharmacology, Clinical , Software , Workflow
13.
Restor Neurol Neurosci ; 37(2): 87-96, 2019.
Article in English | MEDLINE | ID: mdl-30856132

ABSTRACT

BACKGROUND/OBJECTIVES: Motor impairment induced by traumatic brain injury (TBI) may be mediated through changes in spinal molecular systems regulating neuronal plasticity. We assessed whether a focal controlled cortical impact (CCI) TBI in the rat alters expression of the Tgfb1, c-Fos, Bdnf, and Gap43 neuroplasticity genes in lumbar spinal cord.Approach/Methods:Adult male Sprague-Dawley rats (n = 8) were subjected to a right-side CCI over the anterior sensorimotor hindlimb representation area or sham-injury (n = 8). Absolute expression levels of Tgfb1, c-Fos, Bdnf, and Gapd43 genes were measured by droplet digital PCR in ipsi-and contralesional, dorsal and ventral quadrants of the L4 and L5 spinal cord. The neuronal activity marker c-Fos was analysed by immunohistochemistry in the dorsal L4 and L5 segments. The contra- vs. ipsilesional expression pattern was examined as the asymmetry index, AI. RESULTS: The Tgfb1 mRNA levels were significantly higher in the CCI vs. sham-injured rats, and in the contra- vs. ipsilesional dorsal domains in the CCI group. The number of c-Fos-positive cells was elevated in the L4 and L5 segments; and on the contralesional compared to the ipsilesional side in the CCI group. The c-Fos AI in the dorsal laminae was significantly increased by CCI. CONCLUSIONS: The results support the hypothesis that focal TBI induces plastic alterations in the lumbar spinal cord that may contribute to either motor recovery or maladaptive motor responses.


Subject(s)
Brain Injuries, Traumatic/metabolism , Neuronal Plasticity/physiology , Spinal Cord/metabolism , Animals , Brain Injuries, Traumatic/pathology , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , GAP-43 Protein/metabolism , Gene Expression , Lumbar Vertebrae , Male , Neurons/metabolism , Neurons/pathology , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Spinal Cord/pathology , Transforming Growth Factor beta1/metabolism
14.
Diabetes Obes Metab ; 21(4): 829-836, 2019 04.
Article in English | MEDLINE | ID: mdl-30456904

ABSTRACT

AIMS: To assess the dapagliflozin exposure-response relationship in Japanese and non-Japanese patients with type 1 diabetes mellitus (T1DM) and investigate if a dose adjustment is required in Japanese patients. MATERIALS AND METHODS: Data from two clinical studies were used to develop a non-linear mixed effects model describing the relationship between dapagliflozin exposure (area under the concentration curve) and response (24-hour urinary glucose excretion [UGE]) in Japanese and non-Japanese patients with T1DM. The effects of patient-level characteristics (covariates; identified using a stepwise procedure) on response was also assessed. Simulations were performed using median-normalized covariate values. RESULTS: Data from 84 patients were included. Average self-monitored blood glucose (SMBG) at day 7, change from baseline in total insulin dose at day 7, and baseline estimated glomerular filtration rate (eGFR) all had a significant effect on 24-hours UGE, with SMBG being the most influential. Dapagliflozin systemic exposure for matching doses and baseline eGFR was similar between Japanese and non-Japanese patients; however, higher SMBG and a greater reduction in total insulin dose was observed in the Japanese population. When the significant covariates were included, the model fit the data well for both populations, and accurately predicted exposure-response in the Japanese and non-Japanese populations, in agreement with the observed data. CONCLUSIONS: There was no difference in dapagliflozin exposure-response in Japanese and non-Japanese patients with T1DM once differences in renal function, glycaemic control and insulin dose reductions between studies were considered. Therefore, no dose adjustment is recommended in Japanese patients with T1DM.


Subject(s)
Asian People , Benzhydryl Compounds/administration & dosage , Blood Glucose/metabolism , Diabetes Mellitus, Type 1/drug therapy , Glucosides/administration & dosage , Glycosuria/urine , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Adolescent , Adult , Aged , Computer Simulation , Diabetes Mellitus, Type 1/metabolism , Dose-Response Relationship, Drug , Female , Humans , Japan , Male , Middle Aged , Randomized Controlled Trials as Topic , Renal Elimination , United States , Young Adult
15.
Brain Res ; 1695: 78-83, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29852138

ABSTRACT

The endogenous opioid system (EOS) controls the processing of nociceptive stimuli and is a pharmacological target for opioids. Alterations in expression of the EOS genes under neuropathic pain condition may account for low efficacy of opioid drugs. We here examined whether EOS expression patterns are altered in the lumbar spinal cord of the rats with spinal nerve ligation (SNL) as a neuropathic pain model. Effects of the left- and right-side SNL on expression of EOS genes in the ipsi- and contralateral spinal domains were analysed. The SNL-induced changes were complex and different between the genes; between the dorsal and ventral spinal domains; and between the left and right sides of the spinal cord. Prodynorphin (Pdyn) expression was upregulated in the ipsilateral dorsal domains by each the left and right-side SNL, while changes in expression of µ-opioid receptor (Oprm1) and proenkephalin (Penk) genes were dependent on the SNL side. Changes in expression of the Pdyn and κ-opioid receptor (Oprk1) genes were coordinated between the ipsi- and contralateral sides. Withdrawal response thresholds, indicators of mechanical allodynia correlated negatively with Pdyn expression in the right ventral domain after right side SNL. These findings suggest multiple roles of the EOS gene products in spinal sensitization and changes in motor reflexes, which may differ between the left and right sides.


Subject(s)
Analgesics, Opioid/pharmacology , Gene Expression/drug effects , Neuralgia/drug therapy , Opioid Peptides/genetics , Spinal Cord/drug effects , Animals , Gene Expression/genetics , Neuralgia/metabolism , Opioid Peptides/metabolism , Pain Threshold/drug effects , Rats, Sprague-Dawley , Receptors, Opioid/metabolism , Receptors, Opioid, mu/drug effects , Receptors, Opioid, mu/metabolism , Spinal Cord/metabolism , Spinal Nerves/metabolism
16.
Transl Psychiatry ; 8(1): 122, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925858

ABSTRACT

Molecular changes in cortical areas of addicted brain may underlie cognitive impairment and loss of control over intake of addictive substances and alcohol. Prodynorphin (PDYN) gives rise to dynorphin (DYNs) opioid peptides which target kappa-opioid receptor (KOR). DYNs mediate alcohol-induced impairment of learning and memory, while KOR antagonists block excessive, compulsive-like drug and alcohol self-administration in animal models. In human brain, the DYN/KOR system may undergo adaptive changes, which along with neuronal loss, may contribute to alcohol-associated cognitive deficit. We addressed this hypothesis by comparing the expression levels and co-expression (transcriptionally coordinated) patterns of PDYN and KOR (OPRK1) genes in dorsolateral prefrontal cortex (dlPFC) between human alcoholics and controls. Postmortem brain specimens of 53 alcoholics and 55 controls were analyzed. PDYN was found to be downregulated in dlPFC of alcoholics, while OPRK1 transcription was not altered. PDYN downregulation was confined to subgroup of subjects carrying C, a high-risk allele of PDYN promoter SNP rs1997794 associated with alcoholism. Changes in PDYN expression did not depend on the decline in neuronal proportion in alcoholics, and thereby may be attributed to transcriptional adaptations in alcoholic brain. Absolute expression levels of PDYN were lower compared to those of OPRK1, suggesting that PDYN expression is a limiting factor in the DYN/KOR signaling, and that the PDYN downregulation diminishes efficacy of DYN/KOR signaling in dlPFC of human alcoholics. The overall outcome of the DYN/KOR downregulation may be disinhibition of neurotransmission, which when overactivated could contribute to formation of alcohol-related behavior.


Subject(s)
Alcoholism/genetics , Enkephalins/genetics , Prefrontal Cortex/physiopathology , Protein Precursors/genetics , Receptors, Opioid, kappa/genetics , Alcoholics , Alleles , Australia , Case-Control Studies , Cognitive Dysfunction/etiology , Down-Regulation , Gene Expression , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
17.
Mol Neurobiol ; 55(8): 7049-7061, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29383684

ABSTRACT

Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.


Subject(s)
Alcoholics , Dopamine/metabolism , Dynorphins/metabolism , Receptors, Opioid, kappa/metabolism , Reward , Case-Control Studies , Dynorphins/genetics , Gene Expression Regulation , Humans , Male , Middle Aged , Models, Biological , Nucleus Accumbens/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Dopamine/metabolism , Receptors, Opioid, kappa/genetics
18.
J Immunol ; 200(3): 1198-1206, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29288203

ABSTRACT

IL-33 is an IL-1 cytokine superfamily member. Binding of IL-33 to the IL-33R induces activation of the canonical NF-κB signaling and activation of MAPKs. In bone marrow-derived dendritic cells, IL-33 induces the production of IL-6, IL-13, and TNF-α. However, the signaling pathways resulting in IL-33-induced effector functions of dendritic cells are unknown. In this article, we show that the IL-33-induced cytokine production is only partly dependent on p65. Thereby, p65 mediates the production of IL-6, but not of IL-13, whereas the p38-Mapk-activated protein kinases 2/3 (MK2/3) signaling module mediates the IL-13, but not the IL-6, production. In addition, GM-CSF, which is critical for the differentiation and proliferation of bone marrow-derived dendritic cells, potentiates the p65-dependent IL-6 and the p38-MK2/3-dependent IL-13 production. Furthermore, we found that effective TNF-α production is only induced in the presence of GM-CSF and IL-33 via the p38-MK2/3 signaling module. Taken together, we found that the p38-MK2/3 signaling module is essential to mediate IL-33-induced cytokine production in dendritic cells.


Subject(s)
Dendritic Cells/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Interleukin-33/immunology , Intracellular Signaling Peptides and Proteins/immunology , Protein Serine-Threonine Kinases/immunology , p38 Mitogen-Activated Protein Kinases/immunology , Animals , Bone Marrow Cells/immunology , Cells, Cultured , Interleukin-13/biosynthesis , Interleukin-6/biosynthesis , MAP Kinase Signaling System/immunology , Mice , Mice, Knockout , Transcription Factor RelA/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology
19.
Cereb Cortex ; 28(9): 3129-3142, 2018 09 01.
Article in English | MEDLINE | ID: mdl-28968778

ABSTRACT

Molecular mechanisms that define patterns of neuropeptide expression are essential for the formation and rewiring of neural circuits. The prodynorphin gene (PDYN) gives rise to dynorphin opioid peptides mediating depression and substance dependence. We here demonstrated that PDYN is expressed in neurons in human dorsolateral prefrontal cortex (dlPFC), and identified neuronal differentially methylated region in PDYN locus framed by CCCTC-binding factor binding sites. A short, nucleosome size human-specific promoter CpG island (CGI), a core of this region may serve as a regulatory module, which is hypomethylated in neurons, enriched in 5-hydroxymethylcytosine, and targeted by USF2, a methylation-sensitive E-box transcription factor (TF). USF2 activates PDYN transcription in model systems, and binds to nonmethylated CGI in dlPFC. USF2 and PDYN expression is correlated, and USF2 and PDYN proteins are co-localized in dlPFC. Segregation of activatory TF and repressive CGI methylation may ensure contrasting PDYN expression in neurons and glia in human brain.


Subject(s)
Enkephalins/biosynthesis , Epigenesis, Genetic/genetics , Gene Expression Regulation/genetics , Neurons/metabolism , Prefrontal Cortex/metabolism , Protein Precursors/biosynthesis , Adult , Aged , Aged, 80 and over , DNA Methylation/genetics , Enkephalins/genetics , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Protein Precursors/genetics , Transcription, Genetic , Upstream Stimulatory Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...