Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
RSC Adv ; 10(23): 13737-13748, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-35492970

ABSTRACT

Tantalum oxide is ubiquitous in everyday life, from capacitors in electronics to ion conductors for electrochromic windows and electrochemical storage devices. Investigations into sol-gel deposition of tantalum oxide, and its sister niobium oxide, has accelerated since the 1980s and continues to this day. The aim of this study is to synthesize a near UV sensitive, air stable, and low toxicity tantalum sol-gel precursor solution for metal oxide thin films - these attributes promise to reduce manufacturing costs and allow for facile mass production. By utilizing 1D and 2D nuclear magnetic resonance, this study shows that by removing ethanol from the precursor solution at a relatively low temperature and pressure, decomposition of the photosensitive complex can be minimized while obtaining a precursor solution with sufficient stability for storage and processing in the atmosphere. The solution described herein is further modified for inkjet printing, where multiple material characterization techniques demonstrate that the solution can be utilized in low temperature, photochemical solution deposition of tantalum oxide, which is likely amorphous. Tested substrates include amorphous silica, crystalline silicon wafer, and gold/titanium/PET foil. The hope is that these results may spark future investigations into electronic, optical, and biomedical device fabrication with tantalum oxide, and potentially niobium oxide, based films using the proposed synthesis method.

3.
ACS Appl Mater Interfaces ; 11(43): 40988-40995, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31591876

ABSTRACT

Understanding of nonequilibrium processes at dynamic interfaces is indispensable for advancing design and fabrication of solid-state and soft materials. The research presented here unveils specific interfacial behavior of aroma molecules and justifies their usage as multifunctional volatile surfactants. As nonconventional volatile amphiphiles, we study commercially available poorly water-soluble compounds from the classes of synthetic and essential flavor oils. Their disclosed distinctive feature is a high dynamic interfacial activity, so that they decrease the surface tension of aqueous solutions on a time scale of milliseconds. Another potentially useful property of such amphiphiles is their volatility, so that they notably evaporate from interfaces on a time scale of seconds. This behavior allows for control of wetting and spreading processes. A revealed synergetic interfacial behavior of mixtures of conventional and volatile surfactants is attributed to a decrease of the activation barrier as a result of high statistical availability of new sites at the surface upon evaporation of the volatile component. Our results offer promising advantages in manufacturing technologies which involve newly creating interfaces, such as spraying, coating technologies, ink-jet printing, microfluidics, laundry, and stabilization of emulsions in cosmetic and food industry, as well as in geosciences for controlling aerosol formation.

4.
Biomicrofluidics ; 11(3): 034101, 2017 May.
Article in English | MEDLINE | ID: mdl-28798855

ABSTRACT

A simple lab-on-a-chip method for blood plasma separation was developed by combining stereolithographic 3D printing with inkjet printing, creating a completely sealed microfluidic device. In some approaches, one dilutes the blood sample before separation, reducing the concentration of a target analyte and increasing a contamination risk. In this work, a single drop (8 µl) of heparinized whole blood could be efficiently filtered using a capillary effect without any external driving forces and without dilution. The blood storage in heparin tubes during 24 h at 4 °C initiated the formation of small crystals that formed auto-filtration structures in the sample upon entering the 3D-printed device, with pores smaller than the red blood cells, separating plasma from the cellular content. The total filtration process took less than 10 s. The presented printed plasma filtration microfluidics fabricated with a rapid prototyping approach is a miniaturized, fast and easy-to-operate device that can be integrated into healthcare/portable systems for point-of-care diagnostics.

5.
ACS Omega ; 2(2): 573-581, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-31457455

ABSTRACT

Printing conducting copper interconnections on plastic substrates is of growing interest in the field of printed electronics. Photonic curing of copper inks with intense pulsed light (IPL) is a promising process as it is very fast and thus can be incorporated in roll-to-roll production. We report on using IPL for obtaining conductive patterns from inks composed of submicron particles of copper formate, a copper precursor that has a self-reduction property. Decomposition of copper formate can be performed by IPL and is affected both by the mode of energy application and the properties of the printed precursor layer. The energy application mode was controlled by altering three pulse parameters: duration, intensity, and repetitions at 1 Hz. As the decomposition results from energy transfer via light absorption, carbon nanotubes (CNTs) were added to the ink to increase the absorbance. We show that there is a strict set of IPL parameters necessary to obtain conductive copper patterns. Finally, we show that by adding as little as 0.5 wt % single-wall CNTs to the ink the absorptance was enhanced by about 50% and the threshold energy required to obtain a conductive pattern decreased by ∼25%. These results have major implications for tailoring inks intended for IPL processing.

6.
Acc Chem Res ; 49(9): 2031-40, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27602780

ABSTRACT

Micro- and nanofabriation technologies have a tremendous potential for the development of powerful sensor array platforms for electrochemical detection. The ability to integrate electrochemical sensor arrays with microfluidic devices nowadays provides possibilities for advanced lab-on-a-chip technology for the detection or quantification of multiple targets in a high-throughput approach. In particular, this is interesting for applications outside of analytical laboratories, such as point-of-care (POC) or on-site water screening where cost, measurement time, and the size of individual sensor devices are important factors to be considered. In addition, electrochemical sensor arrays can monitor biological processes in emerging cell-analysis platforms. Here, recent progress in the design of disease model systems and organ-on-a-chip technologies still needs to be matched by appropriate functionalities for application of external stimuli and read-out of cellular activity in long-term experiments. Preferably, data can be gathered not only at a singular location but at different spatial scales across a whole cell network, calling for new sensor array technologies. In this Account, we describe the evolution of chip-based nanoscale electrochemical sensor arrays, which have been developed and investigated in our group. Focusing on design and fabrication strategies that facilitate applications for the investigation of cellular networks, we emphasize the sensing of redox-active neurotransmitters on a chip. To this end, we address the impact of the device architecture on sensitivity, selectivity as well as on spatial and temporal resolution. Specifically, we highlight recent work on redox-cycling concepts using nanocavity sensor arrays, which provide an efficient amplification strategy for spatiotemporal detection of redox-active molecules. As redox-cycling electrochemistry critically depends on the ability to miniaturize and integrate closely spaced electrode systems, the fabrication of suitable nanoscale devices is of utmost importance for the development of this advanced sensor technology. Here, we address current challenges and limitations, which are associated with different redox cycling sensor array concepts and fabrication approaches. State-of-the-art micro- and nanofabrication technologies based on optical and electron-beam lithography allow precise control of the device layout and have led to a new generation of electrochemical sensor architectures for highly sensitive detection. Yet, these approaches are often expensive and limited to clean-room compatible materials. In consequence, they lack possibilities for upscaling to high-throughput fabrication at moderate costs. In this respect, self-assembly techniques can open new routes for electrochemical sensor design. This is true in particular for nanoporous redox cycling sensor arrays that have been developed in recent years and provide interesting alternatives to clean-room fabricated nanofluidic redox cycling devices. We conclude this Account with a discussion of emerging fabrication technologies based on printed electronics that we believe have the potential of transforming current redox cycling concepts from laboratory tools for fundamental studies and proof-of-principle analytical demonstrations into high-throughput devices for rapid screening applications.

8.
Anal Chem ; 88(7): 3632-7, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26901267

ABSTRACT

We investigate the influence of self-assembled alkanethiol monolayers at the surface of platinum microelectrode arrays on the stochastic amperometric detection of citrate-stabilized silver nanoparticles in aqueous solutions. The measurements were performed using a microelectrode array featuring 64 individually addressable electrodes that are recorded in parallel with a sampling rate of 10 kHz for each channel. We show that both the functional end group and the total length of the alkanethiol influence the charge transfer. Three different terminal groups, an amino, a hydroxyl, and a carboxyl, were investigated using two different molecule lengths of 6 and 11 carbon atoms. Finally, we show that a monolayer of alkanethiols with a length of 11 carbon atoms and a carboxyl terminal group can efficiently block the charge transfer of free nanoparticles in an aqueous solution.


Subject(s)
Metal Nanoparticles/analysis , Silver/analysis , Sulfhydryl Compounds/chemistry , Electrochemical Techniques , Electrodes , Lab-On-A-Chip Devices , Metal Nanoparticles/chemistry , Models, Chemical , Oxidation-Reduction , Silver/chemistry , Stochastic Processes
9.
Anal Chem ; 87(14): 7321-5, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26079741

ABSTRACT

We introduce the stochastic amperometric detection of silver nanoparticles on-chip using a microelectrode array. The technique combines the advantages of parallel and low-noise recordings at individually addressable microelectrodes. We demonstrate the detection of subpicomolar concentrations of silver nanoparticles with a diameter of 10 nm at sampling rates in the kilohertz regime for each channel. By comparison to random walk simulations, we show that the sensitivity of a single measurement is mainly limited by adsorption of nanoparticles at the surface of the chips and the measurement time.


Subject(s)
Lighting , Metal Nanoparticles/analysis , Silver/analysis , Lighting/instrumentation , Microelectrodes , Stochastic Processes
10.
Lab Chip ; 14(3): 602-7, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24296941

ABSTRACT

Electrochemical techniques rely on the stability of a defined reference potential. Due to the need for miniaturization, electrochemical lab-on-a-chip platforms often employ Ag/AgCl quasi-reference electrodes for this purpose. Here, we report on electrochemical artifacts resulting from nanoparticle-electrode collisions originating from standard chlorinated silver wires.


Subject(s)
Electrochemical Techniques/instrumentation , Electrochemical Techniques/standards , Electrodes/standards , Nanoparticles/chemistry , Silver Compounds/chemistry , Silver/chemistry , Artifacts , Ions/chemistry , Miniaturization
11.
J Biomed Opt ; 18(11): 111402, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23788259

ABSTRACT

We present an optoelectrical device capable of in vitro optical stimulation and electrophysiological recording. The device consists of an array of micropixellated InGaN light-emitting diodes coupled to a custom-made ultrathin planar microelectrode array. Cells can be cultured directly on the chip for short- and long-term electrophysiological experiments. To show the functionality of the device, we transfected a cardiomyocyte-like cell line (HL-1) with a light-sensitive protein channelrhodopsin. We monitored action potentials of individual, spontaneously beating, HL-1 cells growing on the chip by extracellular electrical recordings. On-chip optical stimulation was demonstrated by triggering network activity in a confluent HL-1 cell culture and visualized by calcium imaging. We see the potential of our system for electrophysiological experiments with optogenetically modified cells. Optical stimulation can be performed directly on the chip without additional optical components or external light sources.


Subject(s)
Electrophysiology/instrumentation , Microarray Analysis/instrumentation , Molecular Imaging/instrumentation , Animals , Calcium/metabolism , Cell Line , Electrophysiology/methods , Humans , Light , Mice , Microarray Analysis/methods , Microelectrodes , Molecular Imaging/methods , Optogenetics , Rhodopsin/genetics , Rhodopsin/metabolism , Transfection
12.
Anal Chem ; 85(11): 5483-90, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23642073

ABSTRACT

Real-time investigations of neurotransmitter release provide a direct insight on the mechanisms involved in synaptic communication. Carbon fiber microelectrodes are state-of-the-art tools for electrochemical measurements of single vesicle neurotransmitter release. Yet, they lack high-throughput capabilities that are required for collecting robust statistically significant data across multiple samples. Here, we present a chip-based recording system enabling parallel in vitro measurements of individual neurotransmitter release events from cells, cultured directly on planar multielectrode arrays. The applicability of this cell-based platform to pharmacological screening is demonstrated by resolving minute concentration-dependent effects of the dopamine reuptake inhibitor nomifensine on recorded single-vesicle release events from PC12 cells. The experimental results, showing an increased half-time of the recorded events, are complemented by an analytical model for the verification of drug action.


Subject(s)
Carbon/chemistry , Dopamine/analysis , Lab-On-A-Chip Devices , Microelectrodes , Secretory Vesicles/metabolism , Animals , Carbon Fiber , Computer Simulation , Dopamine/metabolism , Dopamine Uptake Inhibitors/pharmacology , Exocytosis/drug effects , Nomifensine/pharmacology , PC12 Cells , Rats , Secretory Vesicles/drug effects , Synaptic Transmission/drug effects
13.
Nanotechnology ; 23(49): 495303, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23150042

ABSTRACT

The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell-surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues.


Subject(s)
Action Potentials/physiology , Aluminum Oxide/chemistry , Biosensing Techniques/instrumentation , Metal Nanoparticles/chemistry , Microelectrodes , Myocytes, Cardiac/physiology , Tissue Array Analysis/instrumentation , Animals , Biological Assay/instrumentation , Cell Line , Cells, Cultured , Conductometry/instrumentation , Equipment Design , Equipment Failure Analysis , Mice
14.
Anal Chem ; 84(10): 4613-7, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22509770

ABSTRACT

We present a disposable system for recording neurotransmitter release from individual cells in vitro. A simple yet reliable microelectrode fabrication process is introduced using screen-printed carbon paste. It allows rapid fabrication of devices at low costs without standard clean-room technology. We demonstrate functionality of the system by real-time observation of vesicle release from single PC12 (rat pheochromocytoma) cells. The cells are cultured directly on the chip and can be used for immediate or long-term in vitro experiments. Thus, our approach may serve as a platform for pharmacological cell culture studies.


Subject(s)
Carbon/chemistry , Electrochemical Techniques , Secretory Vesicles/metabolism , Animals , Dopamine/analysis , Microelectrodes , Microscopy, Electron, Scanning , PC12 Cells , Patch-Clamp Techniques , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...