Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Signal ; 79: 109890, 2021 03.
Article in English | MEDLINE | ID: mdl-33359087

ABSTRACT

Sphingolipids (SPs) are structurally diverse and represent one of the most quantitatively abundant classes of lipids in mammalian cells. In addition to their structural roles, many SP species are known to be bioactive mediators of essential cellular processes. Historically, studies have focused on SP species that contain the canonical 18­carbon, mono-unsaturated sphingoid backbone. However, increasingly sensitive analytical technologies, driven by advances in mass spectrometry, have facilitated the identification of previously under-appreciated, molecularly distinct SP species. Many of these less abundant species contain noncanonical backbones. Interestingly, a growing number of studies have identified clinical associations between these noncanonical SPs and disease, suggesting that there is functional significance to the alteration of SP backbone structure. For example, associations have been found between SP chain length and cardiovascular disease, pain, diabetes, and dementia. This review will provide an overview of the processes that are known to regulate noncanonical SP accumulation, describe the clinical correlations reported for these molecules, and review the experimental evidence for the potential functional implications of their dysregulation. It is likely that further scrutiny of noncanonical SPs may provide new insight into pathophysiological processes, serve as useful biomarkers for disease, and lead to the design of novel therapeutic strategies.


Subject(s)
Cardiovascular Diseases/metabolism , Dementia/metabolism , Diabetes Mellitus/metabolism , Lipid Metabolism , Pain/metabolism , Sphingolipids/metabolism , Animals , Cardiovascular Diseases/genetics , Dementia/genetics , Diabetes Mellitus/genetics , Humans , Pain/genetics , Sphingolipids/chemistry , Sphingolipids/genetics
2.
Cancers (Basel) ; 12(1)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952197

ABSTRACT

Ototoxicity is a major adverse effect of platinum-based chemotherapeutics and currently, there remains a lack of United States Food and Drug Administration-approved therapies to prevent or treat this problem. In our study, we examined the role of the sphingosine 1-phosphate receptor 2 (S1P2) in attenuating cisplatin-induced ototoxicity in several different animal models and cell lines. We found that ototoxicity in S1P2 knockout mice is dependent on reactive oxygen species (ROS) production and that S1P2 receptor activation with a specific agonist, CYM-5478, significantly attenuates cisplatin-induced defects, including hair cell degeneration in zebrafish and prolonged auditory brainstem response latency in rats. We also evaluated the cytoprotective effect of CYM-5478 across different cell lines and showed that CYM-5478 protects neural-derived cell lines but not breast cancer cells against cisplatin toxicity. We show that this selective protection of CYM-5478 is due to its differential effects on key regulators of apoptosis between neural cells and breast cancer cells. Overall, our study suggests that targeting the S1P2 receptor represents a promising therapeutic approach for the treatment of cisplatin-induced ototoxicity in cancer patients.

3.
Neuromolecular Med ; 22(2): 293-303, 2020 06.
Article in English | MEDLINE | ID: mdl-31902115

ABSTRACT

Microglial cells are resident macrophages of the central nervous system (CNS) that respond to bioactive lipids such as docosahexaenoic acid (DHA). Low micromolar concentrations of DHA typically promote anti-inflammatory functions of microglia, but higher concentrations result in a form of pro-inflammatory programmed cell death known as pyroptosis. This study used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to investigate the morphological characteristics of pyroptosis in BV-2 microglial cells following exposure to 200 µM DHA. Vehicle-treated cells are characterized by extended processes, spine-like projections or 0.4 to 5.2 µm in length, and numerous extracellular vesicles (EVs) tethered to the surface of the plasma membrane. In contrast to vehicle-treated cells, gross abnormalities are observed after treating cells with 200 µM DHA for 4 h. These include the appearance of numerous pits or pores of varying sizes across the cell surface, structural collapse and flattening of the cell shape. Moreover, EVs and spines were lost following DHA treatment, possibly due to release from the cell surface. The membrane pores appear after DHA treatment initially measured ~ 30 nm, consistent with the previously reported gasdermin D (GSDMD) pore complexes. Complete collapse of cytoplasmic organization and loss of nuclear envelope integrity were also observed in DHA-treated cells. These processes are morphologically distinct from the changes that occur during cisplatin-induced apoptosis, such as the appearance of apoptotic bodies and tightly packed organelles, and the maintenance of EVs and nuclear envelope integrity. Cumulatively, this study provides a systematic description of the ultrastructural characteristics of DHA-induced pyroptosis, including distinguishing features that differentiate this process from apoptosis.


Subject(s)
Docosahexaenoic Acids/pharmacology , Microglia/drug effects , Pyroptosis/drug effects , Animals , Apoptosis/drug effects , Cell Line , Cell Surface Extensions/drug effects , Cell Surface Extensions/ultrastructure , Cisplatin/pharmacology , Cytoplasm/drug effects , Cytoplasm/ultrastructure , Extracellular Vesicles/drug effects , Extracellular Vesicles/ultrastructure , Mice , Microglia/ultrastructure , Microscopy, Electron , Microscopy, Electron, Scanning , Microscopy, Phase-Contrast , Nuclear Envelope/drug effects , Nuclear Envelope/ultrastructure , Pseudopodia/drug effects , Pseudopodia/ultrastructure , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...