Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 171: 75-83, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29305162

ABSTRACT

While accumulating evidence suggests positive effects of exercise on executive function, such effects vary with environment. In particular, exercise in a hypoxic environment (hypobaric or normobaric hypoxia), leading to decreased oxygen supply, may dampen or cancel such effects. Thus, we further explore the relation between the effects of hypoxic exercise on executive function and their underlying neural mechanisms by monitoring changes of cortical activation patterns using functional near-infrared spectroscopy (fNIRS). Fifteen healthy participants performed color-word Stroop tasks (CWST) before and after a 10 min bout of moderate-intensity exercise (50%V̇O2peak) under normoxic and hypoxic conditions (fraction of inspired oxygen (FIO2) = 0.135). During the CWST, we monitored prefrontal activation using fNIRS. CWST performance under hypoxic conditions decreased compared with normoxic conditions. In addition, CWST-related activation in the left dorsolateral prefrontal cortex (DLPFC) was reduced after a bout of hypoxic exercise. There was statistically significant association between decreased CWST performance and activation in the left DLPFC. These results suggest that moderate exercise under normobaric hypoxic conditions has negative effects on executive function by reducing task-related activations in the DLPFC.


Subject(s)
Executive Function/physiology , Exercise/physiology , Hypoxia/physiopathology , Prefrontal Cortex/physiopathology , Adult , Female , Humans , Male , Spectroscopy, Near-Infrared/methods , Stroop Test , Young Adult
2.
Neurobiol Aging ; 33(11): 2621-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22300952

ABSTRACT

A growing number of reports state that regular exercise enhances brain function in older adults. Recently a functional near-infrared spectroscopy (fNIRS) study revealed that an acute bout of moderate exercise enhanced activation of the left dorsolateral prefrontal cortex (L-DLPFC) associated with Stroop interference in young adults. Whether this acute effect is also applicable to older adults was examined. Sixteen older adults performed a color-word matching Stroop task before and after 10 minutes of exercise on a cycle ergometer at a moderate intensity. Cortical hemodynamics of the prefrontal area was monitored with a fNIRS during the Stroop task. We analyzed Stroop interference (incongruent-neutral) as Stroop performance. Though activation for Stroop interference was found in the bilateral prefrontal area before the acute bout of exercise, activation of the right frontopolar area (R-FPA) was enhanced after exercise. In the majority of participants, this coincided with improved performance reflected in Stroop interference results. Thus, an acute bout of moderate exercise improved Stroop performance in older adults, and this was associated with contralateral compensatory activation.


Subject(s)
Brain/physiology , Exercise/physiology , Aged , Female , Hemodynamics/physiology , Humans , Male , Middle Aged , Neuropsychological Tests , Reaction Time/physiology , Spectroscopy, Near-Infrared/methods
SELECTION OF CITATIONS
SEARCH DETAIL