Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806495

ABSTRACT

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Subject(s)
Bipolar Disorder , Body Temperature , Cadherins , Disease Models, Animal , Locomotion , Mice, Knockout , Animals , Male , Mice , Behavior, Animal , Bipolar Disorder/genetics , Bipolar Disorder/physiopathology , Cadherins/genetics , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Locomotion/genetics , Mice, Inbred C57BL , Prepulse Inhibition/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Protocadherins
2.
PNAS Nexus ; 3(1): pgad481, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213615

ABSTRACT

Although diurnal animals displaying monophasic sleep patterns exhibit periodic cycles of alternating slow-wave sleep (SWS) and rapid eye movement sleep (REMS), the regulatory mechanisms underlying these regular sleep cycles remain unclear. Here, we report that in the Australian dragon Pogona vitticeps exposed to constant darkness (DD), sleep behavior and sleep-related neuronal activity emerged over a 24-h cycle. However, the regularity of the REMS/SWS alternation was disrupted under these conditions. Notably, when the lizards were then exposed to 12 h of light after DD, the regularity of the sleep stages was restored. These results suggest that sleep-related neuronal activity in lizards is regulated by circadian rhythms and that the regularity of REMS and SWS cycling is influenced by daytime light exposure.

SELECTION OF CITATIONS
SEARCH DETAIL