Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Pediatr Res ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914761

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infant intestinal tract, exacerbated by significant diagnostic difficulties. In NEC, the intestine exhibits hypoperfusion and dysmotility, contributing to disease pathogenesis. However, these features cannot be accurately and quantitively assessed with current imaging modalities. We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. METHODS: In this first-in-disease application, we evaluated NEC using PAI to assess intestinal health biomarkers in an experimental model of NEC. NEC was induced in neonatal rats from birth to 4-days. Healthy breastfed (BF) and NEC rat pups were imaged at 2- and 4-days. RESULTS: Intestinal tissue oxygen saturation was measured with PAI, and NEC pups showed significant decreases at 2- and 4-days. Ultrasound and PAI cine recordings were used to capture intestinal peristalsis and contrast agent transit within the intestine. Intestinal motility, assessed using computational intestinal deformation analysis, demonstrated significant reductions in both early and established NEC. NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. CONCLUSION: This preclinical study presents PAI as an emerging diagnostic imaging modality for intestinal disease assessment in premature infants. IMPACT: Necrotizing enterocolitis (NEC) is a devastating intestinal disease affecting premature infants with significant mortality. NEC presents significant clinical diagnostic difficulties, with limited diagnostic confidence complicating timely and effective interventional efforts. This study is an important foundational first-in-disease preclinical study that establishes the utility for PAI to detect changes in intestinal tissue oxygenation and intestinal motility with NEC disease induction and progression. This study demonstrates the feasibility and exceptional promise for the use of PAI to non-invasively assess oxygenation and motility in the healthy and diseased infant intestine.

2.
J Pediatr Surg ; 59(3): 528-536, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37858392

ABSTRACT

BACKGROUND: Within the premature infant intestine, oxygenation and motility play key physiological roles in healthy development and disease such as necrotizing enterocolitis. To date, there are limited techniques to reliably assess these physiological functions that are also clinically feasible for critically ill infants. To address this clinical need, we hypothesized that photoacoustic imaging (PAI) can provide non-invasive assessment of intestinal tissue oxygenation and motility to characterize intestinal physiology and health. METHODS: Ultrasound and photoacoustic images were acquired in 2-day and 4-day old neonatal rats. For PAI assessment of intestinal tissue oxygenation, an inspired gas challenge was performed using hypoxic, normoxic, and hyperoxic inspired oxygen (FiO2). For intestinal motility, oral administration of ICG contrast agent was used to compare control animals to an experimental model of loperamide-induced intestinal motility inhibition. RESULTS: PAI demonstrated progressive increases in oxygen saturation (sO2) as FiO2 increased, while the pattern of oxygen localization remained relatively consistent in both 2-day and 4-day old neonatal rats. Analysis of intraluminal ICG contrast enhanced PAI images yielded a map of the motility index in control and loperamide treated rats. From PAI analysis, loperamide significantly inhibited intestinal motility, with a 32.6% decrease in intestinal motility index scores in 4-day old rats. CONCLUSION: These data establish the feasibility and application of PAI to non-invasively and quantitatively measure intestinal tissue oxygenation and motility. This proof-of-concept study is an important first step in developing and optimizing photoacoustic imaging to provide valuable insight into intestinal health and disease to improve the care of premature infants.


Subject(s)
Photoacoustic Techniques , Humans , Infant, Newborn , Rats , Animals , Animals, Newborn , Photoacoustic Techniques/methods , Loperamide , Oxygen , Intestines/diagnostic imaging , Biomarkers
3.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961632

ABSTRACT

Background: Necrotizing enterocolitis (NEC) is an often-lethal disease of the premature infants' intestinal tract that is exacerbated by significant difficulties in early and accurate diagnosis. In NEC disease, the intestine often exhibits hypoperfusion and dysmotility, which contributes to advanced disease pathogenesis. However, these physiological features cannot be accurately and quantitively assessed within the current constraints of imaging modalities frequently used in the clinic (plain film X-ray and ultrasound). We have previously demonstrated the ability of photoacoustic imaging (PAI) to non-invasively and quantitively assess intestinal tissue oxygenation and motility in a healthy neonatal rat model. As a first-in-disease application, we evaluated NEC pathogenesis using PAI to assess intestinal health biomarkers in a preclinical neonatal rat experimental model of NEC. Methods: NEC was induced in neonatal rat pups from birth to 4 days old via hypertonic formula feeding, full-body hypoxic stress, and lipopolysaccharide administration to mimic bacterial colonization. Healthy breastfed (BF) controls and NEC rat pups were imaged at 2- and 4-days old. Intestinal tissue oxygen saturation was measured with PAI imaging for oxy- and deoxyhemoglobin levels. To measure intestinal motility, ultrasound and co-registered PAI cine recordings were used to capture intestinal peristalsis motion and contrast agent (indocyanine green) transit within the intestinal lumen. Additionally, both midplane two-dimensional and volumetric three-dimensional imaging acquisitions were assessed for oxygenation and motility. Results: NEC pups showed a significant decrease of intestinal tissue oxygenation as compared to healthy BF controls at both ages (2-days old: 55.90% +/- 3.77% vs 44.12% +/- 7.18%; 4-days old: 56.13% +/- 3.52% vs 38.86% +/- 8.33%). Intestinal motility, assessed using a computational intestinal deformation analysis, demonstrated a significant reduction in the intestinal motility index in both early (2-day) and established (4-day) NEC. Extensive NEC damage was confirmed with histology and dysmotility was confirmed by small intestinal transit assay. Conclusions: This study presents PAI as a successful emerging diagnostic imaging modality for both intestinal tissue oxygenation and intestinal motility disease hallmarks in a rat NEC model. PAI presents enormous significance and potential for fundamentally changing current clinical paradigms for detecting and monitoring intestinal pathologies in the premature infant.

4.
bioRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37425813

ABSTRACT

Background: Within the premature infant intestine, oxygenation and motility play key physiological roles in healthy development and disease such as necrotizing enterocolitis. To date, there are limited techniques to reliably assess these physiological functions that are also clinically feasible for critically ill infants. To address this clinical need, we hypothesized that photoacoustic imaging (PAI) can provide non-invasive assessment of intestinal tissue oxygenation and motility to characterize intestinal physiology and health. Methods: Ultrasound and photoacoustic images were acquired in 2-day and 4-day old neonatal rats. For PAI assessment of intestinal tissue oxygenation, an inspired gas challenge was performed using hypoxic, normoxic, and hyperoxic inspired oxygen (FiO2). For intestinal motility, oral administration of ICG contrast agent was used to compare control animals to an experimental model of loperamide-induced intestinal motility inhibition. Results: PAI demonstrated progressive increases in oxygen saturation (sO2) as FiO2 increased, while the pattern of oxygen localization remained relatively consistent in both 2-day and 4-day old neonatal rats. Analysis of intraluminal ICG contrast enhanced PAI images yielded a map of the motility index in control and loperamide treated rats. From PAI analysis, loperamide significantly inhibited intestinal motility, with a 32.6% decrease in intestinal motility index scores in 4-day old rats. Conclusion: These data establish the feasibility and application of PAI to non-invasively and quantitatively measure intestinal tissue oxygenation and motility. This proof-of-concept study is an important first step in developing and optimizing photoacoustic imaging to provide valuable insight into intestinal health and disease to improve the care of premature infants. Highlights: Intestinal tissue oxygenation and intestinal motility are important biomarkers of intestinal physiology in health and disease of premature infants.This proof-of-concept preclinical rat study is the first to report application of photoacoustic imaging for the neonatal intestine.Photoacoustic imaging is demonstrated as a promising non-invasive diagnostic imaging method for quantifying intestinal tissue oxygenation and intestinal motility in premature infants.

5.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36418073

ABSTRACT

BACKGROUND: CD47 is an integral membrane protein that alters adaptive immunosurveillance when bound to the matricellular glycoprotein thrombospondin-1 (TSP1). We examined the impact of the CD47/TSP1 signaling axis on melanoma patient response to anti-PD-1 therapy due to alterations in T cell activation, proliferation, effector function, and bioenergetics. METHODS: A syngeneic B16 mouse melanoma model was performed to determine if targeting CD47 as monotherapy or in combination with anti-PD-1 impacted tumor burden. Cytotoxic (CD8+) T cells from Pmel-1 transgenic mice were used for T cell activation, cytotoxic T lymphocyte, and cellular bioenergetic assays. Single-cell RNA-sequencing, ELISA, and flow cytometry was performed on peripheral blood mononuclear cells and plasma of melanoma patients receiving anti-PD-1 therapy to examine CD47/TSP1 expression. RESULTS: Human malignant melanoma tissue had increased CD47 and TSP1 expression within the tumor microenvironment compared with benign tissue. Due to the negative implications CD47/TSP1 can have on antitumor immune responses, we targeted CD47 in a melanoma model and observed a decrease in tumor burden due to increased tumor oxygen saturation and granzyme B secreting CD8+ T cells compared with wild-type tumors. Additionally, Pmel-1 CD8+ T cells exposed to TSP1 had reduced activation, proliferation, and effector function against B16 melanoma cells. Targeting CD47 allowed CD8+ T cells to overcome this TSP1 interaction to sustain these functions. TSP1 exposed CD8+ T cells have a decreased rate of glycolysis; however, targeting CD47 restored glycolysis when CD8+ T cells were exposed to TSP1, suggesting CD47 mediated metabolic reprogramming of T cells. Additionally, non-responding patients to anti-PD-1 therapy had increased T cells expressing CD47 and circulating levels of TSP1 compared with responding patients. Since CD47/TSP1 signaling axis negatively impacts CD8+ T cells and non-responding patients to anti-PD-1 therapy have increased CD47/TSP1 expression, we targeted CD47 in combination with anti-PD-1 in a melanoma model. Targeting CD47 in combination with anti-PD-1 treatment further decreased tumor burden compared with monotherapy and control. CONCLUSION: CD47/TSP1 expression could serve as a marker to predict patient response to immune checkpoint blockade treatment, and targeting this pathway may preserve T cell activation, proliferation, effector function, and bioenergetics to reduce tumor burden as a monotherapy or in combination with anti-PD-1.


Subject(s)
CD47 Antigen , Melanoma, Experimental , Animals , Humans , Mice , CD47 Antigen/metabolism , Energy Metabolism , Leukocytes, Mononuclear , Lymphocyte Activation , Melanoma, Experimental/drug therapy , Tumor Microenvironment , Thrombospondin 1/metabolism
6.
Cannabis Cannabinoid Res ; 7(3): 279-288, 2022 06.
Article in English | MEDLINE | ID: mdl-33998898

ABSTRACT

Background: The endocannabinoid system is present in multiple organ systems and is involved in smooth muscle regulation, immune function, neuroendocrine modulation, and metabolism of tissues. Limited data are available regarding the presence and role of this system in reproductive tissues. Components of the endocannabinoid system have been identified in myometrial and placental tissues. However, no study has investigated differential expression of the endocannabinoid system in labor. Objectives: The purpose of this study was to identify and quantify two components of the endocannabinoid system, the CB1 cannabinoid receptor and cannabinoid receptor interacting protein 1a (CRIP1a) in uterine and placental tissues, and to determine if there is differential expression in tissues exposed to labor. We hypothesized that CB1 cannabinoid receptor concentration would be altered in uterine and placental tissue exposed to labor compared with tissues not exposed to labor. Study Design: Uterine and placental tissue samples were collected in nine laboring and 11 nonlaboring women undergoing cesarean delivery. CB1 cannabinoid receptor and CRIP1a presence and quantification were evaluated using western blot, immunohistochemistry, and real-time quantitative polymerase chain reaction. Statistical comparisons of laboring and nonlaboring subjects were made for uterine and placental tissue using a Mann-Whitney test. Results: Immunohistochemistry demonstrated positive staining for CB1 cannabinoid receptors and CRIP1a in uterine tissue. The protein abundance of CB1 cannabinoid receptor in uterine tissue was significantly lower in tissues exposed to labor (p=0.01). The protein abundance of CRIP1a was lower in uterine tissue exposed to labor but did not reach statistical significance (p=0.06). mRNA expression of CB1 cannabinoid receptor (p=0.20) and CRIP1a (p=0.63) did not differ in labored compared with nonlabored uterine tissues. Conclusions: Our findings of diminished protein density of CB1 cannabinoid receptor in uterine tissue exposed to labor support the hypothesis that the endocannabinoid system plays a role in parturition. Our data add to the growing body of evidence indicating the endocannabinoid system is of importance for successful reproduction and support the need for additional research investigating this complex system as it pertains to labor. ClinicalTrials.gov ID: NCT03752021.


Subject(s)
Cannabinoids , Cannabinoids/metabolism , Carrier Proteins/genetics , Endocannabinoids/metabolism , Female , Humans , Placenta/metabolism , Pregnancy , Receptors, Cannabinoid/metabolism
7.
Endocrine ; 69(2): 410-419, 2020 08.
Article in English | MEDLINE | ID: mdl-32319014

ABSTRACT

PURPOSE: To address whether differential regulation of the renin-angiotensin-aldosterone system occurs in pre-eclampsia, we performed an analysis of the time course of circulating and urinary profiles of the vasoconstrictor (Ang II) and the vasodilator [Ang-(1-7)] peptides in normal pregnant (NP) and pre-eclamptic (PE) women. METHODS: Urine and plasma samples from 86 nulliparous women were collected prospectively; 67 subjects continued as NP and 19 developed PE. Subjects were enrolled prior to 12 weeks of gestation and plasma and spot urine samples were obtained throughout gestation. Control samples were obtained at 6 weeks postpartum (PP). RESULTS: Mean blood pressure (p < 0.001) was elevated at 31-37 weeks of gestation in PE subjects as compared with NP subjects. Plasma Ang I and Ang II levels were elevated in NP subjects as early as 16 weeks of gestation and maintained throughout gestation. In PE subjects both plasma Ang I and Ang II were elevated at 16-33 weeks as compared with PP levels. PE subjects showed reduced plasma Ang I and Ang II (at 35-37 weeks of gestation) compared with NP subjects. Plasma Ang-(1-7) was unchanged in both groups. All three urinary peptides increased throughout gestation in NP subjects. In PE subjects urinary Ang I was increased at 23-26 weeks and was maintained throughout gestation. Urinary Ang II was increased at 27-29 and 31-33 weeks of gestation. PE subjects had no change in urinary Ang-(1-7). CONCLUSION: The activation of the RAS, particularly Ang II throughout normal gestation may contribute to the maintenance of vascular tone during normal pregnancy. However higher sensitivity to Ang II in pre-eclampsia may be potentiated by the higher circulating and urinary levels of Ang II, unopposed by local renal Ang-(1-7), and thus may contribute to the development of pre-eclampsia.


Subject(s)
Pre-Eclampsia , Angiotensin II , Female , Humans , Kidney/metabolism , Longitudinal Studies , Peptides , Pregnancy , Renin-Angiotensin System
8.
Sci Rep ; 9(1): 8579, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31189936

ABSTRACT

Preeclampsia is a syndrome with diverse clinical presentation that currently has no cure. The apelin receptor system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. We established the systemic outcomes of (Pyr1)-apelin-13 administration in rats with preeclamptic features (TGA-PE, female transgenic for human angiotensinogen mated to male transgenic for human renin). (Pyr1)-apelin-13 (2 mg/kg/day) or saline was infused in TGA-PE rats via osmotic minipumps starting at day 13 of gestation (GD). At GD20, TGA-PE rats had higher blood pressure, proteinuria, lower maternal and pup weights, lower pup number, renal injury, and a larger heart compared to a control group (pregnant Sprague-Dawley rats administered vehicle). (Pyr1)-apelin-13 did not affect maternal or fetal weights in TGA-PE. The administration of (Pyr1)-apelin-13 reduced blood pressure, and normalized heart rate variability and baroreflex sensitivity in TGA-PE rats compared to controls. (Pyr1)-apelin-13 increased ejection fraction in TGA-PE rats. (Pyr1)-apelin-13 normalized proteinuria in association with lower renal cortical collagen deposition, improved renal pathology and lower immunostaining of oxidative stress markers (4-HNE and NOX-4) in TGA-PE. This study demonstrates improved hemodynamic responses and renal injury without fetal toxicity following apelin administration suggesting a role for apelin in the regulation of maternal outcomes in preeclampsia.


Subject(s)
Hemodynamics/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Oxidative Stress/drug effects , Pre-Eclampsia/drug therapy , Angiotensinogen/genetics , Angiotensinogen/metabolism , Animals , Disease Models, Animal , Female , Hemodynamics/genetics , Oxidative Stress/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Rats, Transgenic
9.
Mol Imaging ; 17: 1536012118802721, 2018.
Article in English | MEDLINE | ID: mdl-30348036

ABSTRACT

Placental oxygenation varies throughout pregnancy. The detection of early changes in placental oxygenation as pregnancy progresses is important for early identification of preeclampsia or other complications. This invited commentary discusses a recent preclinical study on the application of 3-dimensional photoacoustic imaging (PAI) for assessment of regional variations in placental oxygenation and longitudinal analysis of differences in placental oxygenation throughout normal pregnancy and pregnancy associated with hypertension or placental insufficiency in mice. Three-dimensional PAI more accurately reflects oxygen saturation, hemoglobin concentrations, and changes in oxygen saturation in whole placenta compared to 2-dimensional imaging. These studies suggest that PAI is a sensitive tool to detect different levels of oxygen saturation in the placental and fetal vasculature in pathologic and normal pregnancy in mice.


Subject(s)
Photoacoustic Techniques , Placenta/diagnostic imaging , Placenta/pathology , Ultrasonography , Animals , Female , Fetus/diagnostic imaging , Fetus/pathology , Imaging, Three-Dimensional , Mice, Inbred C57BL , Pregnancy
10.
FASEB J ; 31(12): 5520-5529, 2017 12.
Article in English | MEDLINE | ID: mdl-28842425

ABSTRACT

Accurate analysis of placental and fetal oxygenation is critical during pregnancy. Photoacoustic imaging (PAI) combines laser technology with ultrasound in real time. We tested the sensitivity and accuracy of PAI for analysis of placental and fetal oxygen saturation (sO2) in mice. The placental labyrinth (L) had a higher sO2 than the junctional zone plus decidua region (JZ+D) in C57Bl/6 mice. Changing maternal O2 from 100 to 20% in C57Bl/6 mice lowered sO2 in these regions. C57Bl/6 mice were treated with the NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) from gestational day (GD) 11 to GD18 to induce hypertension. L-NAME decreased sO2 in L and JZ+D at GD14 and GD18 in association with fetal growth restriction and higher blood pressure. Hypoxia-inducible factor 1α immunostaining was higher in L-NAME vs control mice at GD14. Fetal sO2 levels were similar between l-NAME and control mice at GD14 and GD18. In contrast to untreated C57Bl/6, L-NAME decreased placental sO2 at GD14 and GD18 vs GD10 or GD12. Placental sO2 was lower in fetal growth restriction in an angiotensin-converting enzyme 2 knockout mouse model characterized by placental hypoxia. On phantom studies, patterns of sO2 measured directly correlated with those measured by PAI. In summary, PAI enables the detection of placental and fetal oxygenation during normal and pathologic pregnancies in mice.-Yamaleyeva, L. M., Sun, Y., Bledsoe, T., Hoke, A., Gurley, S. B., Brosnihan, K. B. Photoacoustic imaging for in vivo quantification of placental oxygenation in mice.


Subject(s)
Oxygen/metabolism , Photoacoustic Techniques/methods , Placenta/metabolism , Animals , Disease Models, Animal , Female , Fetal Growth Retardation/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NG-Nitroarginine Methyl Ester/pharmacology , Placenta/drug effects , Pregnancy
13.
Reprod Biol Endocrinol ; 14(1): 68, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27756404

ABSTRACT

BACKGROUND: Cyclooxygenase (COX)-derived prostanoids (PGE2, PGI2) are important contributors to the process of decidualization. Previous studies showed the presence of Ang-(1-7) in the primary and secondary decidualized zones of the implantation site at early pregnancy. Decreased concentrations of Ang-(1-7) were found in the decidualized uterus compared to the non-decidualized uterus of pseudopregnant rats, suggesting that low levels of Ang-(1-7) are required for successful decidualization at early pregnancy. METHODS: To understand the role of Ang-(1-7) in prostaglandin production in a decidualized uterus, induced by a bolus injection of sesame oil, Ang-(1-7) (24 µg/kg/h) or vehicle was then infused directly into the decidualized uterine horn using an osmotic minipump. The right horns were not injected or infused and served as non-decidualized uterine horns in both groups of animals. RESULTS: Decidualization increased PGE2 concentration in the uterus (0.53 ± 0.05 vs. 12.0 ± 3.2 pmol/mg protein, p < 0.001, non-decidualized vs. decidualized horns); Ang-(1-7) infusion attenuated the increase of PGE2 (12.0 ± 3.2 vs. 5.1 ± 1.3 pmol/mg protein, p < 0.01 control vs. Ang-(1-7) treated decidualized horns). The stable metabolite of PGI2 (6-keto PGF1α) was increased with decidualization (0.79 ± 0.17 vs. 3.5 ± 0.82 pmol/mg protein, p < 0.001, non-decidualized vs. decidualized horns). Ang-(1-7) infusion attenuated the increase in 6-keto PGF1α in the decidualized horn (3.5 ± 0.82 vs 1.8 ± 0.37 pmol/mg protein, p < 0.05 control vs. Ang-(1-7) treated decidualized horns). The circulating levels of 6-keto-PGF1a and TXB2 were decreased by Ang-(1-7) infusion, while no difference was observed in circulating PGE2. Although the global assessment of cleaved caspase 3 immunostaining, a marker of apoptosis, was unchanged within the Ang-(1-7) decidualized horn, there were localized decreases in cleaved caspase 3 staining in the luminal region in the decidualized uterus of Ang-(1-7)-treated rats. CONCLUSIONS: These studies show that increased local uterine Ang-(1-7) alters the uterine prostaglandin environment, possibly leading to disruptions of early events of decidualization.


Subject(s)
6-Ketoprostaglandin F1 alpha/metabolism , Angiotensin I/administration & dosage , Dinoprostone/metabolism , Peptide Fragments/administration & dosage , Pseudopregnancy/metabolism , Uterus/metabolism , 6-Ketoprostaglandin F1 alpha/antagonists & inhibitors , Animals , Decidua/drug effects , Decidua/metabolism , Dinoprostone/antagonists & inhibitors , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Uterus/drug effects
14.
Curr Opin Nephrol Hypertens ; 25(5): 396-403, 2016 09.
Article in English | MEDLINE | ID: mdl-27258138

ABSTRACT

PURPOSE OF REVIEW: Despite extensive pharmacological treatment, hypertension and heart failure still pose as high health and economic burden. Thus, novel therapeutic approaches are needed to promote more effective treatment of hypertension and cardiovascular disease. In this review we summarized recent evidence supporting the therapeutic potential of apelin-13, a recently discovered endogenous ligand for the G-protein coupled receptor APJ. RECENT FINDINGS: Systemic administration of apelin-13 or its posttranslationally modified form, pyroglutamate apelin-13, exert vasodilatory and antihypertensive effects. Yet, central application of apelin increases blood pressure and its systemic effects may be compromised in the presence of endothelial dysfunction. In addition, positive inotropic effects by exogenous apelin in the normal and failing heart, as well as cardioprotective effects after myocardial infarction, strongly suggest its therapeutic potential in preventing and treating heart failure and consequences of myocardial ischemia. However, therapeutic use of apelin is limited primarily by its short half-life and parenteral administration, and significant effort has been directed to the development of novel agonists, delivery methods, and improving the efficacy of agonists at APJ. SUMMARY: The apelin/APJ axis may represent a new target for the development of novel therapeutic approaches for the treatment of hypertension and cardiovascular disease.


Subject(s)
Antihypertensive Agents/pharmacology , Blood Pressure/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Antihypertensive Agents/therapeutic use , Heart Failure/drug therapy , Humans , Intercellular Signaling Peptides and Proteins/therapeutic use , Myocardial Ischemia/drug therapy
15.
Shock ; 46(5): 527-530, 2016 11.
Article in English | MEDLINE | ID: mdl-27172152

ABSTRACT

Photoacoustic (PA) imaging is an emerging technology that combines structural and functional imaging of tissues using laser and ultrasound energy. We evaluated the ability of PA imaging system to measure real-time systemic and microvascular mean oxygen saturation (mSAO2) in a rat model of hypoxic shock. Male Sprague Dawley rats (n = 6) underwent femoral artery catherization and were subjected to acute hypoxia by lowering the fraction of inspired oxygen (FiO2) from 1.0 to 0.21, and then to 0.08. PA measurements of mSaO2 were taken in the femoral artery near the catheter tip using the Vevo 2100 LAZR at each FiO2 and compared to co-oximetry on blood removed from the femoral catheter. Both co-oximetry and PA imaging measured a similar stepwise decline in femoral artery mSaO2 as FiO2 was lowered. We also measured mSaO2 in the feed arteriole of the rat spinotrapezius muscle and adjacent microvessels (n = 6) using PA imaging. A significant decrease in mSaO2 in both the feed arteriole and adjacent microvessels was recorded as FiO2 was decreased from 1.0 to 0.08. Moreover, we detected a rapid return toward baseline mSaO2 in the feed arteriole and microvessels when FiO2 was increased from 0.08 to 1.0. Thus, PA imaging is noninvasive imaging modality that can accurately measure real-time oxygen saturation in the macro and microcirculation during acute hypoxia. This proof-of-concept study is a first step in establishing PA imaging as an investigational tool in critical illness.


Subject(s)
Femoral Artery/physiology , Hypoxia/diagnosis , Microcirculation/physiology , Muscle, Skeletal/physiology , Photoacoustic Techniques/methods , Animals , Blood Pressure/physiology , Male , Oximetry , Oxygen/metabolism , Rats , Rats, Sprague-Dawley , Regional Blood Flow/physiology
16.
Am J Physiol Endocrinol Metab ; 309(10): E852-60, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26394665

ABSTRACT

The role of the endogenous apelin system in pregnancy is not well understood. Apelin's actions in pregnancy are further complicated by the expression of multiple forms of the peptide. Using radioimmunoassay (RIA) alone, we established the expression of apelin content in the chorionic villi of preeclamptic (PRE) and normal pregnant women (NORM) at 36-38 wk of gestation. Total apelin content was lower in PRE compared with NORM chorionic villi (49.7±3.4 vs. 72.3±9.8 fmol/mg protein; n=20-22) and was associated with a trend for lower preproapelin mRNA in the PRE. Further characterization of apelin isoforms by HPLC-RIA was conducted in pooled samples from each group. The expression patterns of apelin peptides in NORM and PRE villi revealed little or no apelin-36 or apelin-17. Pyroglutamate apelin-13 [(Pyr1)-apelin-13] was the predominant form of the peptide in NORM and PRE villi. Angiotensin-converting enzyme 2 (ACE2) activity was higher in PRE villi (572.0±23.0 vs. 485.3±24.8 pmol·mg(-1)·min(-1); n=18-22). A low dose of ANG II (1 nM; 2 h) decreased apelin release in NORM villous explants that was blocked by the ANG II receptor 1 (AT1) antagonist losartan. Moreover, losartan enhanced apelin release above the 2-h baseline levels in both NORM and PRE villi (P<0.05). In summary, these studies are the first to demonstrate the lower apelin content in human placental chorionic villi of PRE subjects using quantitative RIA. (Pyr1)-apelin-13 is the predominant form of endogenous apelin in the chorionic villi of NORM and PRE. The potential mechanism of lower apelin expression in the PRE villi may involve a negative regulation of apelin by ANG II.


Subject(s)
Chorionic Villi/metabolism , Down-Regulation , Intercellular Signaling Peptides and Proteins/metabolism , Pre-Eclampsia/metabolism , Adult , Angiotensin II/chemistry , Angiotensin II/metabolism , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme 2 , Apelin , Chorionic Villi/drug effects , Chorionic Villi/pathology , Down-Regulation/drug effects , Female , Gene Expression Regulation, Developmental/drug effects , Humans , Intercellular Signaling Peptides and Proteins/genetics , Peptidyl-Dipeptidase A/metabolism , Pre-Eclampsia/drug therapy , Pre-Eclampsia/pathology , Pregnancy , Pregnancy Trimester, Third , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Precursors/genetics , Protein Precursors/metabolism , Protein Processing, Post-Translational/drug effects , Pyrrolidonecarboxylic Acid/metabolism , RNA, Messenger/metabolism , Tissue Culture Techniques , Young Adult
17.
Am J Physiol Endocrinol Metab ; 309(9): E811-7, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26394667

ABSTRACT

The pregnant female human angiotensinogen (hAGN) transgenic rat mated with the male human renin (hREN) transgenic rat is a model of preeclampsia (TgA) with increased blood pressure, proteinuria, and placenta alterations of edema and necrosis at late gestation. We studied vascular responses and the role of COX-derived prostanoids in the uterine artery (UA) at early gestation in this model. TgA UA showed lower stretch response, similar smooth muscle α-actin content, and lower collagen content compared with Sprague-Dawley (SD) UA. Vasodilation to acetylcholine was similar in SD and TgA UA (64 ± 8 vs. 75 ± 6% of relaxation, P > 0.05), with an acetylcholine-induced contraction in TgA UA that was abolished by preincubation with indomethacin (78 ± 6 vs. 83 ± 11%, P > 0.05). No differences in the contraction to phenylephrine were observed (159 ± 11 vs. 134 ± 12 %KMAX, P > 0.05), although in TgA UA this response was greatly affected by preincubation with indomethacin (179 ± 16 vs. 134 ± 9 %KMAX, P < 0.05, pD2 5.92 ± 0.08 vs. 5.85 ± 0.03, P < 0.05). Endothelium-independent vasodilation was lower in TgA UA (92 ± 2 vs. 74 ± 5% preconstricted tone, P < 0.05), and preincubation with indomethacin restored the response to normal values (90 ± 3 vs. 84 ± 3%). Immunostaining showed similar signals for α-actin, COX-2, and eNOS between groups (P > 0.05). Plasma thromboxane levels were similar between groups. In summary, TgA UA displays functional alterations at early gestation before the preeclamptic phenotype is established. Inhibition of COX enzymes normalizes some of the functional defects in the TgA UA. An increased role for COX-derived prostanoids in this model of preeclampsia may contribute to the development of a hypertensive pregnancy.


Subject(s)
Disease Models, Animal , Pre-Eclampsia/physiopathology , Rats , Uterine Artery/physiopathology , Angiotensinogen/genetics , Animals , Female , Humans , Male , Phenotype , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Pregnancy , Rats, Sprague-Dawley , Rats, Transgenic , Renin/genetics
18.
Am J Physiol Endocrinol Metab ; 309(1): E84-94, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25968580

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) knockout is associated with reduced fetal weight at late gestation; however, whether uteroplacental vascular and/or hemodynamic disturbances underlie this growth-restricted phenotype is unknown. Uterine artery reactivity and flow velocities, umbilical flow velocities, trophoblast invasion, and placental hypoxia were determined in ACE2 knockout (KO) and C57Bl/6 wild-type (WT) mice at day 14 of gestation. Although systolic blood pressure was higher in pregnant ACE2 KO vs. WT mice (102.3 ± 5.1 vs. 85.1 ± 1.9 mmHg, n = 5-6), the magnitude of difference was similar to that observed in nonpregnant ACE2 KO vs. WT mice. Maternal urinary protein excretion, serum creatinine, and kidney or heart weights were not different in ACE2 KO vs. WT. Fetal weight and pup-to-placental weight ratio were lower in ACE2 KO vs. WT mice. A higher sensitivity to Ang II [pD2 8.64 ± 0.04 vs. 8.5 ± 0.03 (-log EC50)] and greater maximal contraction to phenylephrine (169.0 ± 9.0 vs. 139.0 ± 7.0% KMAX), were associated with lower immunostaining for Ang II receptor 2 and fibrinoid content of the uterine artery in ACE2 KO mice. Uterine artery flow velocities and trophoblast invasion were similar between study groups. In contrast, umbilical artery peak systolic velocities (60.2 ± 4.5 vs. 75.1 ± 4.5 mm/s) and the resistance index measured using VEVO 2100 ultrasound were lower in the ACE2 KO vs. WT mice. Immunostaining for pimonidazole, a marker of hypoxia, and hypoxia-inducible factor-2α were higher in the trophospongium and placental labyrinth of the ACE2 KO vs. WT. In summary, placental hypoxia and uterine artery dysfunction develop before major growth of the fetus occurs and may explain the fetal growth restricted phenotype.


Subject(s)
Hypoxia/genetics , Peptidyl-Dipeptidase A/genetics , Placenta/pathology , Umbilical Cord/blood supply , Uterine Artery/physiopathology , Angiotensin-Converting Enzyme 2 , Animals , Blood Flow Velocity , Female , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Fetal Growth Retardation/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/blood supply , Placenta/metabolism , Placenta/physiopathology , Placental Circulation/physiology , Pregnancy , Umbilical Cord/physiopathology
19.
Reprod Biol Endocrinol ; 13: 5, 2015 Jan 17.
Article in English | MEDLINE | ID: mdl-25596750

ABSTRACT

BACKGROUND: Endocannabinoids (ECs) are important contributors to implantation and decidualization and are suppressed in early pregnancy. Elevated levels of anandamide (AEA), the endogenous ligand for the CB1 and CB2 receptors (R), interfere with receptivity of the blastocyst. Ang-(1-7) is down-regulated in the implantation site (IS) in normal pregnancy at day 7 of gestation. We determined the effects of intra-uterine angiotensin-(1-7) [Ang-(1-7)] (24 microg/kg/h) or vehicle given into the left uterine horn on the ECs in the decidualized uterus. METHODS: Ovariectomized rats were sensitized for the decidual cell reaction by steroid treatment and decidualization was induced by a bolus of oil injected into the left horn; the right horn served as a control. RESULTS: Decidualization increased endometrial permeability (3.1+/-0.2 vs. 7.1+/-0.5 uterus/muscle of cpm of (125)I-BSA, p < 0.0001). VEGF mRNA was increased by the decidualization (1.4-fold, p < 0.05) and by Ang-(1-7) (2.0-fold, p < 0.001). CB1R mRNA was reduced by decidualization (2.7-fold, p < 0.001), but increased by Ang-(1-7) (1.9-fold, p < 0.05). CB2R mRNA was increased by decidualization (4-fold, p < 0.05) and by Ang-(1-7) (2.4-fold, p < 0.001). The enzyme metabolizing AEA, fatty acid amide hydrolase (FAAH), was reduced by decidualization (7.8 fold, p < 0.001) and unchanged by Ang-(1-7) (p > 0.05), whereas the enzyme metabolizing 2-arachidonoylglycerol, monoacyl glycerol lipase (MAGL), was unchanged by decidualization (p > 0.05) and increased by Ang-(1-7) (1.7 fold, p < 0.001). CONCLUSIONS: These findings report for the first time that Ang-(1-7) augments the expression of CB1R, CB2R and MAGL in the decidualized uterus and thus may interfere with the early events of decidualization.


Subject(s)
Amidohydrolases/genetics , Angiotensin I/administration & dosage , Embryo Implantation , Endocannabinoids/metabolism , Monoacylglycerol Lipases/genetics , Peptide Fragments/administration & dosage , Receptors, Cannabinoid/genetics , Uterus/drug effects , Amidohydrolases/metabolism , Animals , Arachidonic Acids/metabolism , Decidua/drug effects , Decidua/metabolism , Embryo Implantation/drug effects , Embryo Implantation/genetics , Female , Gene Expression Regulation, Enzymologic/drug effects , Glycerides/metabolism , Infusion Pumps , Monoacylglycerol Lipases/metabolism , Pregnancy , Pseudopregnancy , Rats , Rats, Sprague-Dawley , Receptors, Cannabinoid/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , Uterus/metabolism
20.
Hypertension ; 64(3): 619-25, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24935942

ABSTRACT

Increased vascular sensitivity to angiotensin II (Ang II) is a marker of a hypertensive human pregnancy. Recent evidence of interactions between the renin-angiotensin system and the endocannabinoid system suggests that anandamide and 2-arachidonoylglycerol may modulate Ang II contraction. We hypothesized that these interactions may contribute to the enhanced vascular responses in hypertensive pregnancy. We studied Ang II contraction in isolated uterine artery (UA) at early gestation in a rat model that mimics many features of preeclampsia, the transgenic human angiotensinogen×human renin (TgA), and control Sprague-Dawley rats. We determined the role of the cannabinoid receptor 1 by blockade with SR171416A, and the contribution of anandamide and 2-arachidonoylglycerol degradation to Ang II contraction by inhibiting their hydrolyzing enzyme fatty acid amide hydrolase (with URB597) or monoacylglycerol lipase (with JZL184), respectively. TgA UA showed increased maximal contraction and sensitivity to Ang II that was inhibited by indomethacin. Fatty acid amide hydrolase blockade decreased Ang IIMAX in Sprague-Dawley UA, and decreased both Ang IIMAX and sensitivity in TgA UA. Monoacylglycerol lipase blockade had no effect on Sprague-Dawley UA and decreased Ang IIMAX and sensitivity in TgA UA. Blockade of the cannabinoid receptor 1 in TgA UA had no effect. Immunolocalization of fatty acid amide hydrolase and monoacylglycerol lipase showed a similar pattern between groups; fatty acid amide hydrolase predominantly localized in endothelium and monoacylglycerol lipase in smooth muscle cells. We demonstrated an increased Ang II contraction in TgA UA before initiation of the hypertensive phenotype. Anandamide and 2-arachidonoylglycerol reduced Ang II contraction in a cannabinoid receptor 1-independent manner. These renin-angiotensin system-endocannabinoid system interactions may contribute to the enhanced vascular reactivity in early stages of hypertensive pregnancy.


Subject(s)
Angiotensin II/pharmacology , Endocannabinoids/antagonists & inhibitors , Hypertension, Pregnancy-Induced/physiopathology , Pregnancy, Animal/physiology , Uterine Artery/physiology , Vasoconstriction/drug effects , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/metabolism , Animals , Arachidonic Acids/antagonists & inhibitors , Arachidonic Acids/metabolism , Benzamides/pharmacology , Benzodioxoles/pharmacology , Blood Pressure/physiology , Carbamates/pharmacology , Disease Models, Animal , Endocannabinoids/metabolism , Female , Glycerides/antagonists & inhibitors , Glycerides/metabolism , Humans , Hydrolysis , Male , Monoglycerides/antagonists & inhibitors , Monoglycerides/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/antagonists & inhibitors , Polyunsaturated Alkamides/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Uterine Artery/drug effects , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...