Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38673844

ABSTRACT

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Subject(s)
Genetic Markers , Osteogenesis , Vitamin D , Vitamin D/analogs & derivatives , Animals , Female , Rats , Osteogenesis/drug effects , Vitamin D/pharmacology , Ovariectomy , Epiphyses/drug effects , Epiphyses/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Bone Remodeling/drug effects , Rats, Sprague-Dawley , Bone Morphogenetic Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Bone and Bones/metabolism , Bone and Bones/drug effects
2.
Drug Alcohol Depend ; 257: 111139, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38430788

ABSTRACT

BACKGROUND: The recreational drug ±3,4-methylenedioxymethamphetamine (MDMA; also known as "ecstasy") has unusual subjective prosocial and empathogenic effects, and has exhibited potential as an adjunct to psychotherapy in recent years. However, there has been some concern regarding possible neuropsychiatric symptoms, such as cognitive impairment and dependence, emerging after abstinence. Therefore, this study aimed to evaluate the mechanism underlying cognitive impairment during MDMA withdrawal. To achieve this, we focused on the arachidonic acid cascade, which is related to addiction to some abusive drugs. METHODS: A novel object recognition task was used to investigate cognitive function in mice. Furthermore, we quantified prostaglandin E2 during MDMA withdrawal. RESULTS: The recognition index significantly decreased during withdrawal after repeated administration of MDMA (10mg/kg, i.p., once daily for 7 days), but not following co-administration of diclofenac (10mg/kg, i.p.), a cyclooxygenase inhibitor. On day 1, following repeated MDMA treatment, prostaglandin E2 content significantly increased in the hippocampus but not in the prefrontal cortex and striatum. CONCLUSIONS: Our findings indicate that activation of the arachidonic acid cascade at least in the hippocampus is likely involved in the development of recognition memory impairment during MDMA withdrawal. Therefore, co-use of cyclooxygenase inhibitors with MDMA may reduce concerns regarding MDMA-induced impairment of recognition memory.


Subject(s)
N-Methyl-3,4-methylenedioxyamphetamine , Mice , Animals , N-Methyl-3,4-methylenedioxyamphetamine/adverse effects , Arachidonic Acid/pharmacology , Cognition , Hippocampus , Prostaglandins/pharmacology
3.
Front Bioeng Biotechnol ; 11: 1243951, 2023.
Article in English | MEDLINE | ID: mdl-37885453

ABSTRACT

The current study aimed to evaluate bone tissue regeneration using a combination of ß-tricalcium phosphate (ßTCP) and phosphorylated pullulan (PPL, a phosphate-rich polysaccharide polymer consisting of maltotriose units). Round defects of 2 mm diameter were created in the arterial center of rat tibiae, which were further treated with vehicle (control group), ßTCP (ßTCP group), or ßTCP + PPL (ßTCP + PPL group) grafts. The control specimens without bone grafts exhibited rapid bone formation after 1 week; however, the regenerated bone was not resorbed until 4 weeks. In contrast, ßTCP-grafted specimens exhibited fewer but thicker trabeculae, whereas the ßTCP + PPL group displayed many fine trabeculae at 4 weeks. In the ßTCP + PPL group, new bone was associated with the ßTCP granules and PPL. Similarly, PHOSPHO1-positive osteoblasts were localized on the ßTCP granules as well as the PPL. On the other hand, TRAP-reactive osteoclasts predominantly localized on newly-formed bone and ßTCP granules rather than on the PPL. No significant differences were observed in the expression of Alp, Integrin αv, Osteopontin, Osteocalcin, and Dmp-1 in PPL-treated MC3T3-E1 osteoblastic cells, suggesting that PPL did not facilitate osteoblastic differentiation. However, von Kossa staining identified abundant needle-like calcified structures extending inside the PPL. Furthermore, transmission electron microscopy (TEM) revealed many globular structures identical to calcified nodules. In addition, calcified collagen fibrils were observed in the superficial layer of the PPL. Thus, PPL may serve as a scaffold for osteoblastic bone formation and promotes calcification on its surface. In conclusion, we speculated that ßTCP and PPL might promote bone regeneration and could be integrated into promising osteoconductive materials.

4.
Article in English | MEDLINE | ID: mdl-37622394

ABSTRACT

BACKGROUND: Although feeding with a liquid diet does not affect the growth of rat submandibular glands, it inhibits the growth of rat parotid glands during growth periods. In these growth-inhibited parotid glands, the growth of parasympathetic nerves is also suppressed. Meanwhile, the mature parotid glands of animals maintained on a liquid diet become morphologically and functionally atrophic, however, there is no effect of a liquid diet on mature submandibular glands. The objective of the present study was to clarify whether the nerve distribution in the mature salivary glands of rats was affected by a liquid diet. MATERIALS AND METHODS: Seven-week-old male Wistar rats were used in this study. Half of the rats were kept on a pellet diet, and half were kept on a liquid diet, for 3, 7, 14, or 21 days. All rats were euthanised by isoflurane at each endpoint. Then, the parotid and submandibular glands were removed, frozen in liquid nitrogen, cryosectioned, and stained with antibodies against protein gene product 9.5 (PGP 9.5; general nerve marker), tyrosine hydroxylase (TH; sympathetic nerve marker), or neuronal nitric oxide synthase (nNOS; parasympathetic nerve marker). RESULTS: In parotid and submandibular glands of the pellet diet group, PGP 9.5- and TH-like immunoreactivity were seen around acini and ducts, and nNOS-like immunoreactivity was lower than PGP 9.5- and TH-like immunoreactivity. In the parotid glands of the liquid diet group, similar immunoreactivities were seen throughout the experimental period. The distribution of antibody labelling in the submandibular glands of the liquid diet group was similar to that of the pellet diet group and remained unchanged during the experimental period. CONCLUSIONS: The present study demonstrated no regressive effects of a liquid diet on the distribution of sympathetic or parasympathetic nerves in mature parotid glands and submandibular glands. This differed from inhibitory effects on the growth of parotid glands seen during growth periods.

5.
J Oral Biosci ; 65(1): 55-61, 2023 03.
Article in English | MEDLINE | ID: mdl-36521753

ABSTRACT

OBJECTIVES: Human cellular cementum has incremental lines that demarcate individual cementum lamellae. The structural and functional details of the lines remain poorly understood. This study was designed to examine human cellular cementum using light microscopy, scanning electron microscopy, and contact microradiography and to elucidate the ultrastructure of incremental lines and their significance in cellular cementogenesis. METHODS: Longitudinal paraffin and ground sections of human mandibular molars were prepared. Paraffin sections were stained with hematoxylin, or hematoxylin and eosin, or impregnated with silver. Hematoxylin-stained sections were observed via scanning electron microscopy using NaOH maceration. Silver-impregnated sections were further stained with hematoxylin. Hematoxylin-stained ground sections were examined using contact microradiography. RESULTS: The incremental lines were found to be collagen fibril-poor layers. The outer area of each cementum lamella consisted of highly mineralized fibrils involved in constructing an alternating lamellar structure, whereas the inner area consisted of irregularly arranged, less highly mineralized, fibrils. The incremental lines corresponded with the innermost sites of the inner area. CONCLUSIONS: Based on the obtained findings, we suggest that cellular cementogenesis progresses as follows. (1) Cementoblasts alternate between low-to high-activity states. (2) In the earliest low-activity stage, cementoblasts generate poorly mineralized, fibril-poor, incremental lines. (3) As cementoblasts recover activity, fibril-organization and mineralization advance in the cementum. (4) In the high-activity stage, cementoblasts reach full activity and construct the highly mineralized, alternating lamellar structure. (5) Cementoblasts revert back to the low-activity stage. (6) The above processes are repeated, thus, alternately generating the incremental lines and cementum lamellae.


Subject(s)
Dental Cementum , Paraffin , Humans , Dental Cementum/ultrastructure , Hematoxylin , Silver , Microscopy, Electron, Scanning
6.
J Oral Biosci ; 64(3): 346-351, 2022 09.
Article in English | MEDLINE | ID: mdl-35537657

ABSTRACT

OBJECTIVES: The function of capillary ends at the epiphyseal plate has been actively investigated. However, their morphology is still poorly understood. This study was designed to examine the capillary ends invading the epiphyseal plate three-dimensionally by scanning electron microscopy and discuss the relationship between their morphology and function. METHODS: Distal halves of the femora of eight-week-old male Wistar rats were used. The specimens were divided into two groups for transmission and scanning electron microscopy. For transmission electron microscopy, sagittal ultrathin sections were routinely prepared after the demineralization of the specimens, and the chondro-osseous junction was examined at the epiphyseal plate. For scanning electron microscopy, the specimens were sagittally freeze-cracked, osmium-macerated, and routinely processed. RESULTS: Endothelial cells of capillary ends had fine fenestrations, and hence they were distinguishable from perivascular cells (also known as septoclasts). Based on the outline and the presence or absence of pores, the capillary ends were divided into four types: closed dome, closed spire, porous dome, and porous spire. The two dome types generally occupied more than half of a lacuna, whereas the two spire types generally occupied only a small part of a lacuna. The porous types engulfed cellular remnants, indicative of degraded chondrocytes, via their pores. Some of the spire types penetrated the transverse septum. CONCLUSIONS: The morphological variety of capillary ends reflected their functional variety. Observations suggest that the capillary ends change their morphology dynamically in response to various functions, including the removal of degraded chondrocytes and perforation of transverse septa.


Subject(s)
Growth Plate , Osmium , Animals , Endothelial Cells , Male , Microscopy, Electron, Scanning , Rats , Rats, Wistar
7.
J Oral Biosci ; 64(2): 210-216, 2022 06.
Article in English | MEDLINE | ID: mdl-35381373

ABSTRACT

BACKGROUND: Modernization has made individuals prefer processed and cooked foods (soft food), but this eating habit may have negative effects on the oral cavity. However, laboratory animals fed with soft diet are commonly used in an attempt to clarify this issue, and various oral tissues, including the salivary glands have been examined. In this review, we summarize the findings of previous studies concerning the responses of salivary glands to daily intake of soft diet. HIGHLIGHT: The weight of the parotid glands decreased in rodents fed with soft diet (liquid or powder). In atrophic parotid glands, acinar cell shrinkage is histologically observed and the DNA content is reduced, showing that the atrophy is caused by a decrease in the size and number of acinar cells. Immunohistochemical examinations showed that the decrease in the acinar cell number was induced by suppression of acinar cell proliferation and acceleration of apoptosis. The atrophic parotid glands recovered following a change from soft to pellet diet. Other salivary glands, such as the submandibular, sublingual, and palatine glands, responded only slightly to the soft diet feeding. CONCLUSION: Accumulated research data showed that a soft diet negatively affects the parotid glands much more than other salivary glands and that atrophic parotid glands are able to recover by switching to a hard diet. Therefore, it should be emphasized that good eating habits are important for not only digestion but also the health of oral tissues, including the salivary glands.


Subject(s)
Salivary Glands , Submandibular Gland , Acinar Cells/pathology , Animals , Atrophy/pathology , Diet , Parotid Gland , Submandibular Gland/pathology
8.
Biomed Res ; 42(5): 161-171, 2021.
Article in English | MEDLINE | ID: mdl-34544992

ABSTRACT

Modeling, the changes of bone size and shape, often takes place at the developmental stages, whereas bone remodeling-replacing old bone with new bone-predominantly occurs in adults. Unlike bone remodeling, bone formation induced by modeling i.e., minimodeling (microscopic modeling in cancellous bone) is independent of osteoclastic bone resorption. Although recently-developed drugs for osteoporotic treatment could induce minimodeling-based bone formation in addition to remodeling-based bone formation, few reports have demonstrated the histological aspects of minimodeling-based bone formation. After administration of eldecalcitol or romosozumab, unlike teriparatide treatment, mature osteoblasts formed new bone by minimodeling, without developing thick preosteoblastic layers. The histological characteristics of minimodeling-based bone formation is quite different from remodeling, as it is not related to osteoclastic bone resorption, resulting in convex-shaped new bone and smooth cement lines called arrest lines. In this review, we will show histological properties of minimodeling-based bone formation by osteoporotic drugs.


Subject(s)
Osteogenesis , Pharmaceutical Preparations , Bone Remodeling , Bone and Bones , Osteoblasts
9.
Histochem Cell Biol ; 156(5): 503-508, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34436644

ABSTRACT

The three-dimensional morphology of the Golgi apparatus in osteoclasts was investigated by computer-aided reconstruction. Rat femora were treated for nicotinamide adenine dinucleotide phosphatase (NADPase) cytochemistry, and light microscopy was used to select several osteoclasts in serial semi-thin sections to investigate the Golgi apparatus by backscattered electron-mode scanning electron microscopy. Lace-like structures with strong backscattered electron signals were observed around the nuclei. These structures, observed within the Golgi apparatus, were attributed to the reaction products (i.e., lead precipitates) of NADPase cytochemistry. Features on the images corresponding to the Golgi apparatus, nuclei, and ruffled border were manually traced and three-dimensionally reconstructed using ImageJ/Fiji (an open-source image processing package). In the reconstructed model, the Golgi apparatus formed an almost-continuous structure with a basket-like configuration, which surrounded all the nuclei and also partitioned them. This peculiar three-dimensional morphology of the Golgi apparatus was discovered for the first time in this study. On the basis of the location of the cis- and trans-sides of the Golgi apparatus and the reported results of previous studies, we postulated that the nuclear membrane synthesized specific proteins in the osteoclasts and, accordingly, the Golgi apparatus accumulated around the nuclei as a receptacle.


Subject(s)
Golgi Apparatus/metabolism , Imaging, Three-Dimensional , NADP/metabolism , Osteoclasts/metabolism , Animals , Golgi Apparatus/chemistry , Histocytochemistry , Male , Microscopy, Electron, Scanning , Osteoclasts/cytology , Rats , Rats, Wistar
10.
J Oral Biosci ; 63(3): 259-264, 2021 09.
Article in English | MEDLINE | ID: mdl-34391947

ABSTRACT

OBJECTIVE: This study aimed to demonstrate the immunolocalization and gene expression of tissue nonspecific alkaline phosphatase (TNALP) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) in osteoblasts, preosteoblasts, and osteocytes of murine bone to provide clues for a better understanding of the supply of phosphate ions (Pi) during bone mineralization. METHODS: Six-week-old male C57BL/6J mice (n = 6) were fixed with a paraformaldehyde solution, and the right femora were extracted for immunodetection of TNALP and ENPP1, while the left tibiae were used for reverse transcription polymerase chain reaction to evaluate Tnalp and Enpp1 gene expression. RESULTS: TNALP was intensely localized on the basolateral cell membranes of mature osteoblasts and preosteoblastic cells. There was little immunoreactivity of TNALP on the secretory surface of the osteoblasts and no TNALP reactivity in the osteocytes. In contrast, ENPP1 was observed throughout the cytoplasm of mature osteoblasts and osteocytes embedded in bone but was not observed in preosteoblasts. Together, despite the fact that the osteoid is a site of matrix vesicle-mediated mineralization, ENPP1, which inhibits mineralization by providing pyrophosphates, was localized in close proximity of the osteoid, whereas TNALP, which facilitates mineralization by providing Pi, was relatively distant from the osteoid. CONCLUSION: It seems likely that the differential localization of TNALP and ENPP1 around the osteoid observed at the microscopic level may provide preferential micro-circumstance for a balanced concentration of Pi and pyrophosphate for bone mineralization.


Subject(s)
Alkaline Phosphatase , Pyrophosphatases , Alkaline Phosphatase/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Osteocytes , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics
11.
Biomed Res ; 40(4): 133-143, 2019.
Article in English | MEDLINE | ID: mdl-31413234

ABSTRACT

In this study, we attempted to localize the immunoreactivities of podoplanin/E11/gp38 and CD44, a counterpart possessing a high affinity to podoplanin/E11/gp38, as well as endomucin-immunoreactive blood vessels in the regions of odontoblast layers and the underlying sub-odontoblastic layers in murine tooth germs. Endomucin-reactive small blood vessels were scattered throughout the dental papillae of the tooth germs at postnatal day 1 but came to be localized close to the odontoblast/sub-odontoblastic layers until day 3. After postnatal day 5, small blood vessels were seen in odontoblast cell layers, while blood vessels with relatively larger diameters were seen forming in sub-odontoblastic layers. Immunoreactivities of podoplanin/E11/gp38 and CD44 were not detectable in the cells of dental papillae facing the inner enamel epithelium at postnatal day 1. However, at around postnatal days 3-5, podoplanin/E11/gp38 was localized in the odontoblast layer but not in the sub-odontoblastic layer, whereas CD44 was observed in the sub-odontoblastic layer but not in the odontoblast layer. The exclusive immunolocalization of podoplanin/E11/gp38 and CD44 in the odontoblast layers and sub-odontoblastic layers was seen after postnatal day 3 of the tooth germs, when the mesenchymal cells of dental papillae have already differentiated into mature odontoblasts at the cusp tip. Taken together, it seems likely that endomucin-reactive small blood vessels extended to the podoplanin/E11/gp38-positive odontoblast layers, whereas endomucin-reactive large blood vessels were already present in CD44-immmunopositive sub-odontoblastic layer, indicating the cellular regulation on the vascularization of endomucin-reactive endothelial cells during odontogenesis of the tooth germs.


Subject(s)
Hyaluronan Receptors/biosynthesis , Membrane Glycoproteins/biosynthesis , Odontoblasts/metabolism , Odontogenesis/physiology , Sialoglycoproteins/biosynthesis , Tooth Germ/growth & development , Animals , Immunohistochemistry , Mice , Odontoblasts/cytology , Tooth Germ/blood supply , Tooth Germ/cytology
12.
Sci Rep ; 9(1): 9621, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31270353

ABSTRACT

The impairment of learning and memory is a well-documented effect of both natural and synthetic cannabinoids. In the present study, we aimed to investigate the effect of acute administration of JWH-018, a synthetic cannabinoid, on the hippocampal metabolome to assess biochemical changes in vivo. JWH-018 elevated levels of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The increase of endocannabinoid levels in response to JWH-018 could be inhibited by co-administration of AM251, a CB1 receptor antagonist. Biochemical analyses revealed that this was the result of suppression of two hydrolases involved in endocannabinoid degradation (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL]). Additionally, we showed that JWH-018 causes a reduction in the levels of brain-derived neurotrophic factor (BDNF), which is known to modulate synaptic plasticity and adaptive processes underlying learning and memory. The decrease of BDNF following JWH-018 treatment was also rescued by co-administration of AM251. As both endocannabinoids and BDNF have been shown to modulate learning and memory in the hippocampus, the alteration of their levels in response to JWH-018 may explain the contribution of synthetic cannabinoids to impairment of memory.


Subject(s)
Brain/drug effects , Brain/physiology , Cannabinoids/pharmacology , Endocannabinoids/biosynthesis , Indoles/pharmacology , Naphthalenes/pharmacology , Animals , Biomarkers , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Cannabinoids/adverse effects , Cannabinoids/chemistry , Hippocampus/metabolism , Indoles/adverse effects , Indoles/chemistry , Learning/drug effects , Memory/drug effects , Metabolome , Metabolomics/methods , Mice , Naphthalenes/adverse effects , Naphthalenes/chemistry , Spectrum Analysis
13.
J Oral Biosci ; 61(2): 105-114, 2019 06.
Article in English | MEDLINE | ID: mdl-31109862

ABSTRACT

BACKGROUND: Human cellular cementum and compact bone exhibit an alternating lamellar structure, in which intensely and faintly stainable lamellae are stratified in an alternating manner. Many investigators, including our group, have accumulated considerable data regarding lamellar structure. In this review, we summarize the alternating lamellar structure, based on available data, and introduce our hypothesis regarding its formation. HIGHLIGHT: We implemented 10% and 24% NaOH maceration methods for scanning electron microscopy. The 10% NaOH maceration method was used for detailed examination of the collagen fibril arrangement, whereas the 24% NaOH maceration method was used for examination of cell morphology in the absence of collagen fibrils. The following findings were obtained: (1) sections of cementum and bone showed two types of alternating lamellae-those comprising longitudinally and nearly longitudinally arranged fibril arrays, and those comprising transversely and nearly transversely arranged fibril arrays; (2) the fibril arrays appeared to shift arrangement in a regular and periodic manner, such that the alternating lamellar structure appeared in sections; (3) where the alternating lamellar structure was being formed, osteoblasts and cementoblasts extended slender processes alongside newly deposited fibrils. CONCLUSION: Our data showed that the alternating lamellar structure was consistent with the twisted plywood model previously proposed for osteonal lamellae. For the formation of this structure, there have been two major hypotheses: a self-assembly hypothesis and a cellular control hypothesis. Our data support the latter; osteoblasts and cementoblasts move their processes synchronously and periodically to control fibril arrangement, thereby forming the alternating lamellar structure.


Subject(s)
Dental Cementum , Haversian System , Animals , Bone and Bones , Humans , Microscopy, Electron, Scanning , Osteoblasts , Rats
14.
Microscopy (Oxf) ; 68(3): 243-253, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30860257

ABSTRACT

This study was designed to observe osteoclasts in the rat femora by light and electron microscopic cytochemistry for nicotinamide adenine dinucleotide phosphatase (NADPase) and arylsulfatase, and scanning electron microscopy using osmium maceration to assess the three-dimensional morphology of the Golgi apparatus in osteoclasts. The Golgi apparatus showed strong NADPase activity and surrounded each nucleus with the cis-side facing the nucleus. The Golgi apparatus could be often traced for a length of 20 µm or longer. Observations of serial semi-thin sections confirmed that a single line of reaction products (=lead precipitates) intervened somewhere between any two neighboring nuclei. The nuclear membrane showed strong arylsulfatase activity as well as rough endoplasmic reticulum and lysosomes. Scanning electron microscopy showed that the Golgi apparatus covered the nucleus in a porous sheet-like configuration. Under magnification, the cis-most saccule showed a sieve-like configuration with fine fenestrations. The saccules decreased fenestration numbers toward the trans-side and displayed a more plate-like appearance. The above findings indicate the following. (1) The Golgi saccules of osteoclasts have a three-dimensional structure comparable with that generally seen in other cell types. (2) The Golgi apparatus forms a porous multi-spherical structure around nuclei. Within the structure, in most cases a Golgi stack partitions the room into several compartments in each of which a nucleus fits. (3) The nuclear membrane synthesizes some kinds of proteins more stably and sufficiently than the rough endoplasmic reticulum. Consequently, the Golgi apparatus accumulates around nuclei with the cis-side facing the nucleus.


Subject(s)
Arylsulfatases/metabolism , Golgi Apparatus/ultrastructure , NAD/chemistry , Osteoclasts/ultrastructure , Pyrophosphatases/metabolism , Animals , Endoplasmic Reticulum, Rough/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Male , Microscopy, Electron, Scanning , Nuclear Envelope/metabolism , Osmium/chemistry , Rats , Rats, Wistar
15.
Int J Neuropsychopharmacol ; 22(2): 165-172, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30481332

ABSTRACT

Background: Methamphetamine is a highly addictive psychostimulant with reinforcing properties. Our laboratory previously found that Δ8-tetrahydrocannabinol, an exogenous cannabinoid, suppressed the reinstatement of methamphetamine-seeking behavior. The purpose of this study was to determine whether the elevation of endocannabinoids modulates the reinstatement of methamphetamine-seeking behavior and emotional changes in methamphetamine self-administered rats. Methods: Rats were tested for the reinstatement of methamphetamine-seeking behavior following methamphetamine self-administration and extinction. The elevated plus-maze test was performed in methamphetamine self-administered rats during withdrawal. We investigated the effects of JZL184 and URB597, 2 inhibitors of endocannabinoid hydrolysis, on the reinstatement of methamphetamine-seeking and anxiety-like behaviors. Results: JZL184 (32 and 40 mg/kg, i.p.), an inhibitor of monoacylglycerol lipase, significantly attenuated both the cue- and stress-induced reinstatement of methamphetamine-seeking behavior. Furthermore, URB597 (3.2 and 10 mg/kg, i.p.), an inhibitor of fatty acid amide hydrolase, attenuated only cue-induced reinstatement. AM251, a cannabinoid CB1 receptor antagonist, antagonized the attenuation of cue-induced reinstatement by JZL184 but not URB597. Neither JZL184 nor URB597 reinstated methamphetamine-seeking behavior when administered alone. In the elevated plus-maze test, rats that were in withdrawal from methamphetamine self-administration spent less time in the open arms. JZL184 ameliorated the decrease in time spent in the open arms. Conclusion: We showed that JZL184 reduced both the cue- and stress-induced reinstatement of methamphetamine-seeking and anxiety-like behaviors in rats that had self-administered methamphetamine. It was suggested that a decrease in 2-arachidonoylglycerol in the brain could drive the reinstatement of methamphetamine-seeking and anxiety-like behaviors.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Amphetamine-Related Disorders/drug therapy , Anti-Anxiety Agents/pharmacology , Anxiety/drug therapy , Behavior, Addictive/drug therapy , Behavior, Animal/drug effects , Benzamides/pharmacology , Benzodioxoles/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Carbamates/pharmacology , Central Nervous System Stimulants , Methamphetamine , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/pharmacology , Animals , Male , Maze Learning/drug effects , Rats , Rats, Wistar
16.
Biomed Res ; 38(4): 257-267, 2017.
Article in English | MEDLINE | ID: mdl-28794403

ABSTRACT

To assess the chronological participation of sclerostin and FGF23 in bone metabolism, this study tracked the immunolocalization of sclerostin and FGF23 in the metaphyses of murine long bones from embryonic day 18 (E18) through 1 day after birth, 1 week, 2 weeks, 4 weeks, 8 weeks, and 20 weeks of age. We have selected two regions in the metaphyseal trabeculae for assessing sclerostin and FGF23 localization: close to the chondro-osseous junction, i.e., bone modeling site even in the adult animals, and the trabecular region distant from the growth plate, where bone remodeling takes place. As a consequence, sclerostin-immunopositive osteocytes could not be observed in both close and distant trabecular regions early at the embryonic and young adult stages. However, osteocytes gradually started to express sclerostin in the distant region earlier than in the close region of the trabeculae. Immunoreactivity for FGF23 was observed mainly in osteoblasts in the early stages, but detectable in osteocytes in the later stages of growth in trabecular and cortical bones. Fgf23 was weakly expressed in the embryonic and neonatal stages, while the receptors, Fgfr1c and αKlotho were strongly expressed in femora. At the adult stages, Fgf23 expression became more intense while Fgfr1c and aKlotho were weakly expressed. These findings suggest that sclerostin is secreted by osteocytes in mature bone undergoing remodeling while FGF23 is synthesized by osteoblasts and osteocytes depending on the developmental/growth stage. In addition, it appears that FGF23 acts in an autocrine and paracrine fashion in fetal and neonatal bones.


Subject(s)
Bone and Bones/metabolism , Fibroblast Growth Factors/metabolism , Glycoproteins/metabolism , Osteocytes/metabolism , Adaptor Proteins, Signal Transducing , Animals , Biomarkers , Bone Remodeling , Cortical Bone/metabolism , Femur/metabolism , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/genetics , Gene Expression , Glycoproteins/genetics , Immunohistochemistry , Intercellular Signaling Peptides and Proteins , Kidney/metabolism , Mice , Protein Transport , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism
17.
Biomed Res ; 38(2): 123-134, 2017.
Article in English | MEDLINE | ID: mdl-28442663

ABSTRACT

Since osteoblastic activities are believed to be coupled with osteoclasts, we have attempted to histologically verify which of the distinct cellular circumstances, the presence of osteoclasts themselves or bone resorption by osteoclasts, is essential for coupled osteoblastic activity, by examining c-fos-/- or c-src-/- mice. Osteopetrotic c-fos deficient (c-fos-/-) mice have no osteoclasts, while c-src deficient (c-src-/-) mice, another osteopetrotic model, develop dysfunctional osteoclasts due to a lack of ruffled borders. c-fos-/- mice possessed no tartrate-resistant acid phosphatase (TRAPase)-reactive osteoclasts, and showed very weak tissue nonspecific alkaline phosphatase (TNALPase)-reactive mature osteoblasts. In contrast, c-src-/- mice had many TNALPase-positive osteoblasts and TRAPase-reactive osteoclasts. Interestingly, the parallel layers of TRAPase-reactive/osteopontin-positive cement lines were observed in the superficial region of c-src-/- bone matrix. This indicates the possibility that in c-src-/- mice, osteoblasts were activated to deposit new bone matrices on the surfaces that osteoclasts previously passed along, even without bone resorption. Transmission electron microscopy demonstrated cell-to-cell contacts between mature osteoblasts and neighboring ruffled border-less osteoclasts, and osteoid including many mineralized nodules in c-src-/- mice. Thus, it seems likely that osteoblastic activities would be maintained in the presence of osteoclasts, even if they are dysfunctional.


Subject(s)
Osteoblasts/physiology , Osteoclasts/metabolism , src-Family Kinases/genetics , Animals , Biomarkers , Bone Resorption/genetics , Bone Resorption/metabolism , CSK Tyrosine-Protein Kinase , Calcification, Physiologic , Cell Communication , Cellular Microenvironment , Immunohistochemistry , Mice , Mice, Knockout , Osteoblasts/ultrastructure , Osteoclasts/ultrastructure , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , src-Family Kinases/deficiency
18.
Free Radic Biol Med ; 108: 204-224, 2017 07.
Article in English | MEDLINE | ID: mdl-28363605

ABSTRACT

Accumulating evidence suggests that cannabinoid ligands play delicate roles in cell survival and apoptosis decisions, and that cannabinoid CB1 receptors (CB1R) modulate dopaminergic function. However, the role of CB1R in methamphetamine (MA)-induced dopaminergic neurotoxicity in vivo remains elusive. Multiple high doses of MA increased phospho-ERK and CB1R mRNA expressions in the striatum of CB1R (+/+) mice. These increases were attenuated by CB1R antagonists (i.e., AM251 and rimonabant), an ERK inhibitor (U0126), or dopamine D2R antagonist (sulpiride). In addition, treatment with MA resulted in dopaminergic impairments, which were attenuated by CB1R knockout or CB1R antagonists (i.e., AM251 and rimonabant). Consistently, MA-induced oxidative stresses (i.e., protein oxidation, lipid peroxidation and reactive oxygen species) and pro-apoptotic changes (i.e., increases in Bax, cleaved PKCδ- and cleaved caspase 3-expression and decrease in Bcl-2 expression) were observed in the striatum of CB1R (+/+) mice. These toxic effects were attenuated by CB1R knockout or CB1R antagonists. Consistently, treatment with four high doses of CB1R agonists (i.e., WIN 55,212-2 36mg/kg and ACEA 16mg/kg) also resulted in significant oxidative stresses, pro-apoptotic changes, and dopaminergic impairments. Since CB1R co-immunoprecipitates PKCδ in the presence of MA or CB1R agonists, we applied PKCδ knockout mice to clarify the role of PKCδ in the neurotoxicity elicited by CB1Rs. CB1R agonist-induced toxic effects were significantly attenuated by CB1R knockout, CB1R antagonists or PKCδ knockout. Therefore, our results suggest that interaction between D2R, ERK and CB1R is critical for MA-induced dopaminergic neurotoxicity and that PKCδ mediates dopaminergic damage induced by high-doses of CB1R agonist.


Subject(s)
Corpus Striatum/metabolism , Dopamine/metabolism , Methamphetamine/administration & dosage , Neurotoxicity Syndromes/metabolism , Protein Kinase C-delta/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Apoptosis , Butadienes/pharmacology , Cells, Cultured , Corpus Striatum/pathology , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurotoxicity Syndromes/genetics , Nitriles/pharmacology , Oxidative Stress , Piperidines/pharmacology , Protein Kinase C-delta/genetics , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/genetics , Receptors, Dopamine D2/metabolism , Rimonabant , Sulpiride/pharmacology
19.
Drug Alcohol Depend ; 160: 76-81, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26796595

ABSTRACT

BACKGROUND: 3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. METHODS: Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. RESULTS: In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. CONCLUSIONS: These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence.


Subject(s)
Cannabinoid Receptor Antagonists/pharmacology , Cues , Drug-Seeking Behavior/drug effects , Methamphetamine/pharmacology , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Amphetamine-Related Disorders/drug therapy , Amphetamine-Related Disorders/psychology , Animals , Cannabinoid Receptor Antagonists/therapeutic use , Dose-Response Relationship, Drug , Extinction, Psychological/drug effects , Male , Methamphetamine/analogs & derivatives , Rats , Self Administration
20.
Jpn Dent Sci Rev ; 52(3): 63-74, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28408958

ABSTRACT

Cementum was first demonstrated by microscopy, about 180 years ago. Since then the biology of cementum has been investigated by the most advanced techniques and equipment at that time in various fields of dental sciences. A great deal of data on cementum histology have been accumulated. These data have been obtained from not only human, but also non-human animals, in particular, rodents such as the mouse and rat. Although many dental histologists have reviewed histology of human cementum, some descriptions are questionable, probably due to incorrect comparison of human and rodent cementum. This review was designed to introduce current histology of human cementum, i.e. its structure, function, and development and to re-examine the most questionable and controversial conclusions made in previous reports.

SELECTION OF CITATIONS
SEARCH DETAIL
...