Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Intern Med ; 61(12): 1823-1833, 2022.
Article in English | MEDLINE | ID: mdl-35705311

ABSTRACT

Objective Evaluating the rate of decline in the estimated glomerular filtration rate (eGFR) may help identify patients with occult chronic kidney disease (CKD). We herein report that eGFR fluctuation complicates the assessment of the rate of decline and propose a long-term eGFR plot analysis as a solution. Methods In 142 patients with persistent eGFR decline in a single hospital, we evaluated the factors influencing the rate of eGFR decline, calculated over the long term (≥3 years) and short term (<3 years) using eGFR plots, taking into account eGFR fluctuation between visits. Results The difference between the rate of eGFR decline calculated using short- and long-term plots increased as the time period considered in the short-term plots became shorter. A regression analysis revealed that eGFR fluctuation was the only factor that explained the difference and that the fluctuation exceeded the annual eGFR decline in all participants. Furthermore, the larger the eGFR fluctuation, the more difficult it became to detect eGFR decline using a short-term eGFR analysis. Obesity, a high eGFR at baseline, and faster eGFR decline were associated with larger eGFR fluctuations. To circumvent the issue of eGFR fluctuation in the assessment of the rate of eGFR decline, we developed a system that generates a long-term eGFR plot using all eGFR values for a participant, which enabled the detection of occult CKD, facilitating early therapeutic intervention. Conclusion The construction of long-term eGFR plots is useful for identifying patients with progressive eGFR decline, as it minimizes the effect of eGFR fluctuation.


Subject(s)
Renal Insufficiency, Chronic , Glomerular Filtration Rate , Humans , Kidney/physiology , Obesity , Regression Analysis , Risk Factors
2.
Genom Data ; 10: 38-50, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27672559

ABSTRACT

This study investigates effects of dipeptide balenine, as a major component of whale meat extract (hereafter, WME), supplementation on senescence-accelerated mouse prone 8 (SAMP8), an Alzheimer's disease (AD) model at level of learning and memory formation and brain expression profiles genome-wide in brain. Mice fed experimental balenine (+ WME) supplemented diet for 26 weeks were subjected to four behavioral tests - open field, Y-maze, new object recognition, and water-filled multiple T-maze - to examine effects on learning and memory. Brain transcriptome of SAMP8 mice-fed the WME diet over control low-safflower oil (LSO) diet-fed mice was delineated on a 4 × 44 K mouse whole genome DNA microarray chip. Results revealed the WME diet not only induced improvements in the learning and memory formation but also positively modulated changes in the brain of the SAMP8 mouse; the gene inventories are publically available for analysis by the scientific community. Interestingly, the SAMP8 mouse model presented many genetic characteristics of AD, and numerous novel molecules (Slc2a5, Treh, Fbp1, Aldob, Ppp1r1a, DNase1, Agxt2l1, Cyp2e1, Acsm1, Acsm2, and Pah) were revealed over the SAMR1 (senescence-accelerated mouse resistant 1) mouse, to be oppositely regulated/recovered under the balenine (+ WME) supplemented diet regime by DNA microarray and bioinformatics analyses. Our present study demonstrates an experimental strategy to understand the effects of dipeptide balenine, prominetly contained in meat diet, on SAMP8, providing new insight into whole brain transcriptome changes genome-wide. The gene expression data has been deposited into the Gene Expression Omnibus (GEO): GSE76459. The data will be a valuable resource in examining the effects of natural products, and which could also serve as a human model for further functional analysis and investigation.

3.
Sci Rep ; 6: 28200, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27323911

ABSTRACT

Galanin-like peptide (GALP) has an anti-obesity effect in rats and mice. It has been reported that the uptake of GALP by the brain is higher after intranasal administration than with intravenous injection. This study therefore aimed to clarify the effect of intranasal administration of GALP on the feeding behavior of lean and obese mice. Autoradiography revealed the presence of (125)I-GALP in the olfactory bulb and the brain microcirculation. The body weights of ob/ob mice gradually increased during vehicle treatment, but remained unchanged in response to repeated intranasal administration of GALP, with both ob/ob and diet-induced obese mice displaying significantly decreased food intake, water intake and locomotor activity when treated with GALP. These results suggest that intranasal administration is an effective route whereby GALP can exert its effect as an anti-obesity drug.


Subject(s)
Anti-Obesity Agents/therapeutic use , Brain/pathology , Galanin-Like Peptide/therapeutic use , Obesity/drug therapy , Administration, Intranasal , Animals , Autoradiography , Body Weight , Energy Metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Rats , Rats, Sprague-Dawley
4.
Sci Rep ; 6: 21481, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26892462

ABSTRACT

Galanin-like peptide (GALP) is a neuropeptide involved in the regulation of feeding behavior and energy metabolism in mammals. While a weight loss effect of GALP has been reported, its effects on lipid metabolism have not been investigated. The aim of this study was to determine if GALP regulates lipid metabolism in liver and adipose tissue via an action on the sympathetic nervous system. The respiratory exchange ratio of mice administered GALP intracerebroventricularly was lower than that of saline-treated animals, and fatty acid oxidation-related gene mRNA levels were increased in the liver. Even though the respiratory exchange ratio was reduced by GALP, this change was not significant when mice were treated with the sympatholytic drug, guanethidine. Lipolysis-related gene mRNA levels were increased in the adipose tissue of GALP-treated mice compared with saline-treated animals. These results show that GALP stimulates fatty acid ß-oxidation in liver and lipolysis in adipose tissue, and suggest that the anti-obesity effect of GALP may be due to anorexigenic actions and improvement of lipid metabolism in peripheral tissues via the sympathetic nervous system.


Subject(s)
Adipose Tissue/innervation , Adipose Tissue/metabolism , Autonomic Nervous System/physiology , Galanin-Like Peptide/metabolism , Lipid Metabolism , Liver/innervation , Liver/metabolism , Adipose Tissue/drug effects , Animals , Autonomic Nervous System/drug effects , Fasting , Galanin-Like Peptide/pharmacology , Gene Expression Regulation/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Male , Mice , RNA, Messenger/genetics
5.
Nano Lett ; 11(2): 343-7, 2011 Feb 09.
Article in English | MEDLINE | ID: mdl-21171625

ABSTRACT

Enhancement of spin polarization was observed in a transition metal oxide (Fe,Zn)(3)O(4)/Nb-SrTiO(3) ferromagnetic nanodot Schottky diode. The highly integrated oxide nanodot diodes were constructed using nanoimprint lithography based on a Mo lift-off method in combination with a pulsed laser deposition technique. The junction magnetoresistance of diodes increased as diode size increased. The spin polarization estimated from the thermionic emission model is enhanced from P = 0.74 in a conventional film to P = 0.89 in a nanodot diode whose size is 300 × 300 nm(2). The nanofabrication technique used here will enable us to construct superior transition metal oxide spintronic nanomaterial and nanodevices.


Subject(s)
Magnetics/instrumentation , Nanostructures/chemistry , Nanotechnology/instrumentation , Oxides/chemistry , Semiconductors , Transition Elements/chemistry , Equipment Design , Equipment Failure Analysis , Nanostructures/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...