Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(15): eabl6192, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35427155

ABSTRACT

In a ferromagnetic Weyl metal SrRuO3, a large effective magnetic field Heff exerted on a magnetic domain wall (DW) by current has been reported. We show that the ratio of Heff to current density exhibits nonmonotonic temperature dependence and surpasses those of conventional spin-transfer torques and spin-orbit torques. This enhancement is described well by topological Hall torque (THT), which is exerted on a DW by Weyl electrons emerging around Weyl points when an electric field is applied across the DW. The ratio of the Heff arising from the THT to current density is over one order of magnitude higher than that originating from spin-transfer torques and spin-orbit torques reported in metallic systems, showing that the THT may provide a better way for energy-efficient manipulation of magnetization in spintronics devices.

2.
Nat Commun ; 5: 4655, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-25130480

ABSTRACT

Recent advances in the understanding of spin orbital effects in ultrathin magnetic heterostructures have opened new paradigms to control magnetic moments electrically. The Dzyaloshinskii-Moriya interaction (DMI) is said to play a key role in forming a Néel-type domain wall that can be driven by the spin Hall torque. Here we show that the strength and sign of the DMI can be changed by modifying the adjacent heavy-metal underlayer (X) in perpendicularly magnetized X/CoFeB/MgO heterostructures. The sense of rotation of a domain wall spiral is reversed when the underlayer is changed from Hf, Ta to W and the strength of DMI varies as the filling of 5d orbitals, or the electronegativity, of the heavy-metal layer changes. The DMI can even be tuned by adding nitrogen to the underlayer, thus allowing interface engineering of the magnetic texture in ultrathin magnetic heterostructures.

3.
Nat Commun ; 4: 2011, 2013.
Article in English | MEDLINE | ID: mdl-23771026

ABSTRACT

Energy barriers in magnetization reversal dynamics have long been of interest because the barrier height determines the thermal stability of devices as well as the threshold force triggering their dynamics. Especially in memory and logic applications, there is a dilemma between the thermal stability of bit data and the operation power of devices, because larger energy barriers for higher thermal stability inevitably lead to larger magnetic fields (or currents) for operation. Here we show that this is not the case for current-induced magnetic domain-wall motion induced by adiabatic spin-transfer torque. By quantifying domain-wall depinning energy barriers by magnetic field and current, we find that there exist two different pinning barriers, extrinsic and intrinsic energy barriers, which govern the thermal stability and threshold current, respectively. This unique two-barrier system allows low-power operation with high thermal stability, which is impossible in conventional single-barrier systems.

4.
Nat Mater ; 12(3): 240-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23263641

ABSTRACT

Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

5.
J Phys Condens Matter ; 24(2): 024221, 2012 Jan 18.
Article in English | MEDLINE | ID: mdl-22172940

ABSTRACT

We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.

SELECTION OF CITATIONS
SEARCH DETAIL
...