Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Musculoskelet Neuronal Interact ; 24(1): 82-89, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427372

ABSTRACT

OBJECTIVE: To investigate the therapeutic effects of autologous platelet-rich plasma (PRP) combined with sodium hyaluronate on tendon healing following rotator cuff injury repair in rabbits. METHODS: New Zealand white rabbits were randomly assigned to five groups: sham operation group, control group, PRP group, sodium hyaluronate group, and combined group, each comprising 12 rabbits. A rotator cuff injury model was established in all groups except the sham operation group. At 8 weeks post-surgery, 12 lateral rotator cuff specimens were taken from each group. Four specimens were randomly selected from each group for biomechanical testing, and analyses were conducted on the expression of vascular endothelial growth factor (VEGF), the fiber area ratio of COL-I and COL-III, and tissue morphology. RESULTS: The combined group exhibited the highest biomechanical strength in the cuff tissue of white rabbits (P < 0.05). There was no significant difference in VEGF levels among the five groups (F = 0.814, P = 0.523). However, a significant difference was observed in the ratio of fiber area between COL-I and COL-III groups (F = 11.600, P < 0.001), with the combined group scoring the highest (3.82 ± 0.47 minutes). The inflammatory infiltration in tendon-bone tissue was minimal, and histological morphology was optimal. CONCLUSION: The combination of PRP and sodium hyaluronate effectively promotes the repair of rotator cuff injuries and accelerates tendon-bone healing.


Subject(s)
Platelet-Rich Plasma , Rotator Cuff Injuries , Rabbits , Animals , Rotator Cuff Injuries/therapy , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/pathology , Vascular Endothelial Growth Factor A/metabolism , Hyaluronic Acid/pharmacology , Hyaluronic Acid/metabolism , Wound Healing , Disease Models, Animal , Tendons , Platelet-Rich Plasma/metabolism , Biomechanical Phenomena
2.
Curr Top Med Chem ; 23(28): 2640-2698, 2023.
Article in English | MEDLINE | ID: mdl-37818581

ABSTRACT

Species of genus Morus (family Moraceae) have been used as traditional medicinal and edible resources since ancient times. Genus Morus has been acknowledged as a promising resource for the exploration of novel compounds with various bioactivities. Phytochemical investigations of the genus have led to the discovery of more than approximately 453 natural products from 2011 to 2023, mainly including flavonoids, Diels-Alder adducts, 2-arylbenzfuran, alkaloids and stilbenes. Bioactive constituents and extracts of this genus displayed a wide range of impressive biological properties including antidiabetic, anti-inflammatory, antioxidant, anti-cancer, hepatoprotective, renoprotective, and some other activities. Herein, the research progress of this genus Morus from 2011 to 2023 on phytochemistry and pharmacology are systematically presented and discussed for the first time. This current review provides the easiest access to the information on genus Morus for readers and researchers in view of enhancing the continuity on research done on this genus.


Subject(s)
Biological Products , Morus , Plants, Medicinal , Morus/chemistry , Biological Products/pharmacology , Plants, Medicinal/chemistry , Plant Extracts/chemistry , Flavonoids/pharmacology , Phytochemicals/pharmacology , Ethnopharmacology , Phytotherapy
3.
Bioresour Technol ; 388: 129756, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37696337

ABSTRACT

The impact of multiple preparation protocols on properties and performance of modified biochar remains unclear. This study prepared layered double hydroxide (LDH)-based magnetic biochars (LMBCs) with different LDH loading rates (LLR), pyrolysis temperatures, and biomass sources to explore their performance-characterization relationships toward As(III) and Cd(II). Higher LLR and pyrolysis temperature enhanced LMBCs᾿ adsorption capacities by increasing specific surface area (SSA) and metal/O-containing groups. Hence, LMBC produced at 2:1 LLR (LDH: magnetic biochar) and 800 ℃ pyrolysis exhibited maximum adsorption over 2 times that of LMBC with 0.5:1 LLR and 400 ℃ pyrolysis. Bamboo-sourced LMBC demonstrated superior adsorption than sewage sludge and garlic-sourced LMBCs due to its increased SSA, enabling a higher loading of nano-LDH. Adsorption of As(III) and Cd(II) onto LMBCs was governed by metal-mineral and metal-containing group through co-precipitation and complexation. This study provides a reference for adjusting the preparation protocols to improve sorption performance of modified biochar toward multiple heavy metals.


Subject(s)
Arsenic , Metals, Heavy , Cadmium , Charcoal , Adsorption , Sewage , Magnetic Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...