Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 11(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38790362

ABSTRACT

Hydrolyzed royal jelly peptide (RJP) has garnered attention for its health-promoting functions. However, the potential applications of RJP in skincare have not been fully explored. In this study, we prepared RJP through the enzymatic hydrolysis of royal jelly protein with trypsin and investigated its antioxidant and anti-inflammatory properties on primary human dermal fibroblasts (HDFs). Our results demonstrate that RJP effectively inhibits oxidative damage induced by H2O2 and lipid peroxidation triggered by AAPH and t-BuOOH in HDFs. This effect may be attributed to the ability of RJP to enhance the level of glutathione and the activities of catalase and glutathione peroxidase 4, as well as its excellent iron chelating capacity. Furthermore, RJP modulates the NLRP3 inflammasome-mediated inflammatory response in HDFs, suppressing the mRNA expressions of NLRP3 and IL-1ß in the primer stage induced by LPS and the release of mature IL-1ß induced by ATP, monosodium urate, or nigericin in the activation stage. RJP also represses the expressions of COX2 and iNOS induced by LPS. Finally, we reveal that RJP exhibits superior antioxidant and anti-inflammatory properties over unhydrolyzed royal jelly protein. These findings suggest that RJP exerts protective effects on skin cells through antioxidative and anti-inflammatory mechanisms, indicating its promise for potential therapeutic avenues for managing oxidative stress and inflammation-related skin disorders.

2.
iScience ; 27(1): 108690, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38235340

ABSTRACT

Prenatal stress has been extensively documented as a contributing factor to adverse cardiac development and function in fetuses and infants. The release of glucocorticoids (GCs), identified as a significant stressor, may be a potential factor inducing cardiac hypertrophy. However, the underlying mechanism remains largely unknown. Herein, we discovered that corticosterone (CORT) overload induced cardiac hypertrophy in embryonic chicks and fetal mice in vivo, as well as enlarged cardiomyocytes in vitro. The impaired mitochondria dynamics were observed in CORT-exposed cardiomyocytes, accompanied by dysfunction in oxidative phosphorylation and ATP production. This phenomenon was found to be linked to decreased mitochondrial fusion protein mitofusin 2 (MFN2). Subsequently, we found that CORT facilitated the ubiquitin-proteasome-system-dependent degradation of MFN2 with an enhanced binding of appoptosin to MFN2, serving as the underlying cause. Collectively, our findings provide a comprehensive understanding of the mechanisms by which exposure to stress hormones induces cardiac hypertrophy in fetuses.

4.
J Clin Invest ; 133(10)2023 05 15.
Article in English | MEDLINE | ID: mdl-37183824

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the gradual loss of midbrain dopaminergic neurons in association with aggregation of α-synuclein. Oxidative damage has been widely implicated in this disease, though the mechanisms involved remain elusive. Here, we demonstrated that preferential accumulation of peroxidized phospholipids and loss of the antioxidant enzyme glutathione peroxidase 4 (GPX4) were responsible for vulnerability of midbrain dopaminergic neurons and progressive motor dysfunctions in a mouse model of PD. We also established a mechanism wherein iron-induced dopamine oxidation modified GPX4, thereby rendering it amenable to degradation via the ubiquitin-proteasome pathway. In conclusion, this study unraveled what we believe to be a novel pathway for dopaminergic neuron degeneration during PD pathogenesis, driven by dopamine-induced loss of antioxidant GPX4 activity.


Subject(s)
Ferroptosis , Parkinson Disease , Mice , Animals , Dopamine/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Dopaminergic Neurons/metabolism , Antioxidants , Ferroptosis/genetics , Parkinson Disease/metabolism , Mesencephalon/metabolism , alpha-Synuclein/metabolism , Ubiquitination
5.
Foods ; 12(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900595

ABSTRACT

Alcohol liver disease (ALD) is one of the leading outcomes of acute and chronic liver injury. Accumulative evidence has confirmed that oxidative stress is involved in the development of ALD. In this study, we used chick embryos to establish ALD model to study the hepatoprotective effects of tamarind shell exttract (TSE). Chick embryos received 25% ethanol (75 µL) and TSE (250, 500, 750 µg/egg/75 µL) from embryonic development day (EDD) 5.5. Both ethanol and TSE were administrated every two days until EDD15. Ethanol-exposed zebrafish and HepG2 cell model were also employed. The results suggested that TSE effectively reversed the pathological changes, liver dysfunction and ethanol-metabolic enzyme disorder in ethanol-treated chick embryo liver, zebrafish and HepG2 cells. TSE suppressed the excessive reactive oxygen species (ROS) in zebrafish and HepG2 cells, as well as rebuilt the irrupted mitochondrial membrane potential. Meanwhile, the declined antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), together with the content of total glutathione (T-GSH) were recovered by TSE. Moreover, TSE upregulated nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxyense-1 (HO-1) expression in protein and mRNA level. All the phenomena suggested that TSE attenuated ALD through activating NRF2 to repress the oxidative stress induced by ethanol.

6.
Molecules ; 28(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36838870

ABSTRACT

Tamarind shell is rich in flavonoids and exhibits good biological activities. In this study, we aimed to analyze the chemical composition of tamarind shell extract (TSE), and to investigate antioxidant capacity of TSE in vitro and in vivo. The tamarind shells were extracted with 95% ethanol refluxing extraction, and chemical constituents were determined by ultra-performance chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). The free radical scavenging activity of TSE in vitro was evaluated using the oxygen radical absorbance capacity (ORAC) method. The antioxidative effects of TSE were further assessed in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated ADTC5 cells and tert-butyl hydroperoxide (t-BHP)-exposed zebrafish. A total of eight flavonoids were detected in TSE, including (+)-catechin, taxifolin, myricetin, eriodictyol, luteolin, morin, apigenin, and naringenin, with the contents of 5.287, 8.419, 4.042, 6.583, 3.421, 4.651, 0.2027, and 0.6234 mg/g, respectively. The ORAC assay revealed TSE and these flavonoids had strong free radical scavenging activity in vitro. In addition, TSE significantly decreased the ROS and MDA levels but restored the SOD activity in AAPH-treated ATDC5 cells and t-BHP-exposed zebrafish. The flavonoids also showed excellent antioxidative activities against oxidative damage in ATDC5 cells and zebrafish. Overall, the study suggests the free radical scavenging capacity and antioxidant potential of TSE and its primary flavonoids in vitro and in vivo and will provide a theoretical basis for the development and utilization of tamarind shell.


Subject(s)
Antioxidants , Tamarindus , Animals , Antioxidants/chemistry , Zebrafish , Chromatography, Liquid , Tandem Mass Spectrometry , Oxidative Stress , Flavonoids/chemistry , Plant Extracts/chemistry , Free Radicals/pharmacology
7.
Angew Chem Int Ed Engl ; 62(16): e202219177, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36813744

ABSTRACT

With a theoretical capacity of 847 mAh g-1 , Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2 O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2 @C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2 @C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g-1 at 1 A g-1 after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2 @C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).

9.
Oxid Med Cell Longev ; 2022: 4932304, 2022.
Article in English | MEDLINE | ID: mdl-36071868

ABSTRACT

Neural tube defect (NTD) is the most common and severe embryopathy causing embryonic malformation and even death associated with gestational diabetes mellitus (GDM). Leu-Pro-Phe (LPF) is an antioxidative tripeptide isolated from hydrolysates of corn protein. However, the biological activity of LPF in vivo and in vitro remains unclear. This study is aimed at investigating the protective effects of tripeptide LPF against NTD in the high glucose exposure condition and delineate the underlying biological mechanism. We found that LPF alleviated NTD in the high glucose-exposed chicken embryo model. In addition, DF-1 chicken embryo fibroblast was loaded with high glucose for induction of oxidative stress and abnormal O-GlcNAcylation in vitro. LPF significantly decreased accumulation of reactive oxygen species and content of malondialdehyde in DF-1 cells but increased the ratio of reduced glutathione and oxidized glutathione in chick embryo. Oxygen radical absorbance capacity results showed that LPF itself had good free radical scavenging capacity and could enhance antioxidant activity of the cell content. Mechanistic studies suggested that the resistance of LPF to oxidative damage may be related to promotion of NRF2 expression and nuclear translocation. LPF alleviated the overall O-GlcNAcylation level of cellular proteins under high glucose conditions and restored the level of Pax3 protein. Collectively, our findings indicate that LPF peptide could act as a nutritional supplement for the protection of development of embryonic neural tube affected by GDM.


Subject(s)
Hyperglycemia , Neural Tube Defects , Protein Hydrolysates , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Chick Embryo , Chickens/metabolism , Dipeptides , Glucose/metabolism , Hyperglycemia/complications , Neural Tube Defects/etiology , Neural Tube Defects/prevention & control , Protein Hydrolysates/pharmacology , Zea mays/chemistry
10.
Materials (Basel) ; 15(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36079457

ABSTRACT

Although fly ash foam concrete (FAFC) is lightweight, heat-retaining, and insulating, its application options are constrained by its weak construction and short lifespan. The effects of various dosage ratios of the foaming agent (i.e., hydrogen peroxide), silica fume, and polypropylene fiber on the dry density, compressive strength, thermal insulation performance, pore structure parameters, and durability of FAFC were analyzed in this study, which sought to address the issues of low strength and low durability of FAFC. According to the findings, there is a negative correlation between the amount of hydrogen peroxide (as the foaming agent) and compressive strength, and, as the silica fume and polypropylene fiber (PP fiber) content rise, the strength will initially rise and then fall. The distribution of pore sizes gradually shifts from being dominated by small pores to large pores as the amount of foaming agent increases, while the porosity and average pore size gradually decrease. When the hydrogen peroxide content is 5%, the pore shape factor is at its lowest. The pore size distribution was first dominated by a small pore size and thereafter by a large pore size when the silica fume and PP fiber concentration increased. Prior to increasing, the porosity, average pore size, and pore shape factor all decreased. Additionally, the impact of PP fiber on the freeze-thaw damage to FAFC was also investigated at the same time. The findings indicate that the freeze-thaw failure of FAFC is essentially frost heave failure of the pore wall. The use of PP fiber is crucial for enhancing FAFC's ability to withstand frost. The best frost resistance is achieved at 0.4% PP fiber content. In conclusion, the ideal ratio for overall performance was found to be 5% hydrogen peroxide content, 4% silica fume content, and 0.1% polypropylene fiber content. The results obtained could be applied in different fields, such as construction and sustainable materials, among others.

11.
Front Microbiol ; 13: 907962, 2022.
Article in English | MEDLINE | ID: mdl-35910661

ABSTRACT

Tea (Camellia sinensis) is an important crop that is mainly used in the food industry. This study using the metabolome and microbiome investigates the resistance factors of wild tea plant resources against tea gray blight disease, which is caused by Pestalotiopsis theae (Sawada) Steyaert. According to the interaction analysis of tea leaves and pathogenic fungus, the resistance of wild tea plant resource "R1" (Resistance 1) to tea gray blight disease was significantly higher than that of wild tea plant resource "S1" (Susceptibility 1). The difference between "R1" and "S1" in the metabolome was obvious. There were 145 metabolites that significantly changed. The phenolic acids and flavonoids were the major increased categories in "R1," and it included 4-O-glucosyl-sinapate and petunidin-3-o-(6"-o-p-coumaroyl) rutinoside. Six metabolic pathways were significantly enriched, including aminoacyl-tRNA biosynthesis, flavone, and flavonol biosynthesis. In terms of bacteria, there was no significant difference between "S1" and "R1" in the principal component analysis (PCA). Pseudomonas was the major bacterial genus in "S1" and "R1." In addition, each of the two resources had its own predominant genus: Cellvibirio was a predominant bacterial genus in "S1" and Candidatus_competibacter was a predominant bacterial genus in "R1." In terms of fungi, the fungal diversity and the abundance of the two tea plant resource samples could be distinguished clearly. The fungal component of "S1" was more abundant than that of "R1" at the genus level. Toxicocladosporium was the predominant fungal genus of "S1," and Filobasidium was the predominant fungal genus of "R1." The relative abundance of unclassified-norank-norank-Chloroplast and Penicillium were significantly different between "S1" and "R1." Penicillium was identified as a potential biomarker. They correlated with some metabolites enriched in "S1" or "R1," such as L-arginine and quercetin-3-o-(2"-o-rhamnosyl) rutinoside-7-o-glucoside. Overall, phenolic acids, flavonoids, and Penicillium could be functional metabolites or microorganisms that contributed to improving the resistance of wild tea plant resources to tea gray blight disease.

12.
Redox Biol ; 55: 102421, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35964342

ABSTRACT

Phospholipid peroxidation of polyunsaturated fatty acids at the bis-allylic position drives ferroptosis. Here we identify a novel role for phospholipid peroxidation in the inhibition of autophagy. Using in vitro and in vivo models, we report that phospholipid peroxidation induced by glutathione peroxidase-4 inhibition and arachidonate 15-lipoxygenase overexpression leads to overload of peroxidized phospholipids and culminate in inhibition of autophagy. Functional and lipidomics analysis further demonstrated that inhibition of autophagy was associated with an increase of peroxidized phosphatidylethanolamine (PE) conjugated LC3. We further demonstrate that autophagy inhibition occurred due to preferential cleavage of peroxidized LC3-PE by ATG4B to yield delipidated LC3. Mouse models of phospholipid peroxidation and autophagy additionally supported a role for peroxidized PE in autophagy inhibition. Our results agree with the recognized role of endoplasmic reticulum as the primary source for autophagosomal membranes. In summary, our studies demonstrated that phospholipid peroxidation inhibited autophagy via stimulating the ATG4B-mediated delipidation of peroxidized LC3-PE.

13.
Food Funct ; 13(13): 6962-6974, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35678194

ABSTRACT

Excessive reactive oxygen species (ROS) accumulation is involved in the pathogenesis of liver fibrosis and damage, specifically in the developing embryo that is extremely sensitive to oxidative stress. Herein, a liver injury model in chick embryo was established by using 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH), which was used to investigate the effect of cyclo(-Phe-Phe) (CPP), a natural dipeptide found in foods and beverages. The results showed that CPP significantly alleviated AAPH-induced liver pathological damage, hepatic dysfunction and inhibited the excessive production of ROS in both chick embryo liver and HepG2 cells. Additionally, CPP increased the antioxidative activity of glutathione peroxidase (GPx) and superoxide dismutase (SOD), as well as elevated the level of glutathione (GSH), suggesting that CPP combating liver injury probably depends on its antioxidant capability. Mechanistically, CPP upregulated the mRNA and protein expression of heme oxyense-1 (HO-1) and NADPH quinone oxidoreductase 1 (NQO1) in vivo and in vitro, along with promoting the translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) while inhibiting its degradation through binding with Kelch-like ECH-associated protein 1 (Keap1). In conclusion, this study proposes a potential peptide drug for the treatment of hepatic damage induced by oxidative stress and also unravels its mechanism of action.


Subject(s)
Dipeptides , NF-E2-Related Factor 2 , Animals , Chick Embryo , Antioxidants/metabolism , Dipeptides/pharmacology , Glutathione/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Liver/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism
14.
ACS Appl Mater Interfaces ; 14(22): 25478-25489, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35634976

ABSTRACT

The electrocatalytic reduction of nitrobenzene to aniline normally faces high overpotential and poor selectivity because of its six-electron redox nature. Herein, a Ag nanoparticles/laser-induced-graphene (LIG) heterointerface was fabricated on polyimide films and employed as an electrode material for an efficient nitrobenzene reduction reaction (NBRR) via a one-step laser direct writing technology. The first-principles calculations reveal that Ag/LIG shows the lowest activation barriers for the NBRR, which could be attributed to the optimum adsorption of the H atom realized by the appropriate interaction between Ag/LIG heterointerfaces and nitrobenzene. As a result, the overpotential of the NBRR is reduced by 217 mV after silver loading, and Ag/LIG shows a high aniline selectivity of 93%. Furthermore, an electrochemical reduction of nitrobenzene in tandem with an electrochemical oxidative polymerization of aniline was designed to serve as an alternative method to remove nitrobenzene from the aqueous solution. This strategy highlights the significance of heterointerfaces for efficient electrocatalysts, which may stimulate the development of novel electrocatalysts to boost the electrocatalytic activity.

15.
Phytochemistry ; 199: 113167, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35378107

ABSTRACT

In the present study, purine alkaloid analysis and transcriptome of Camellia gymnogyna Hung T. Chang (Theaceae) from Dayao Mountain were performed by high-performance liquid chromatography (HPLC) and RNA-Seq, respectively. The results showed that the major purine alkaloids accumulated in Camellia gymnogyna Hung T. Chang (Theaceae) were theobromine together with a small amount of theacrine and caffeine. Through polymerase chain reaction (PCR), three types of cDNA encoding N-methyltransferases were isolated from the leaves of Camellia gymnogyna Hung T. Chang (Theaceae) and designated GCS1, GCS2, and GCS3. We subsequently expressed GCS1, GCS2, and GCS3 in Escherichia coli and incubated lysates of the bacterial cells with a variety of xanthine substrates in the presence of S-adenosyl-L-methionine as the methyl donor. We found that the recombinant GCS1 proteins catalyzed 1,3,7-trimethyluric acid to produce theacrine, the recombinant GCS3 proteins catalyzed 7-methylxanthine to produce theobromine, while the recombinant GCS2 proteins did not catalyze any xanthine derivatives. Simultaneous analysis of the expressions of GCS1, GCS2, GCS3, and a caffeine synthase gene (TCS1) in Camellia gymnogyna Hung T. Chang (Theaceae) and other tea plants provided a reference for further research on the functions of these genes.


Subject(s)
Alkaloids , Camellia , Theaceae , Alkaloids/chemistry , Biosynthetic Pathways , Camellia/chemistry , Camellia/genetics , Methyltransferases/metabolism , Purines/metabolism , Theaceae/metabolism , Theobromine/metabolism , Xanthines/metabolism
16.
Foods ; 11(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35267260

ABSTRACT

Tea (Camelliasinensis var. sinensis) is a widely consumed caffeine-containing beverage, however the Camellia genus also includes other species, which are consumed as tea in their local growing regions. Presently, HPLC analysis assessed 126 unique Camellia germplasms belonging to three Camellia species, C. sinensis var. pubilimba Chang (Csp), C. gymnogyna Chang (CgC) and C. crassicolumna Chang (CcC). Theobromine was the predominant purine alkaloid in all species, representing over 90% of purine alkaloids in Csp and CgC, and 50% in CcC. Significant variability existed in purine alkaloid patterns both between and within species, and some germplasms possessed highly unique alkaloid profiles. Sensory evaluation and quality composition analysis of green tea products produced from the three Camellia species suggested their unsuitability for use in tea production due to their unpalatable flavor. The results of this study revealed the differences in purine alkaloids and main quality components between Camellia species and tea, which contributed to understand why tea, rather than other Camellia species, has become a popular beverage in the world after long-term artificial selection. In addition, unique alkaloid profiles suggest usefulness of these germplasm resources in future breeding of decaffeinated tea plant varieties and alkaloid metabolism research.

17.
Chemosphere ; 288(Pt 3): 132666, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34710463

ABSTRACT

Advanced oxidation processes based on sulfate radicals are considered as a promising approach for environmental remediation. In this study, TiO2@MIL-101(Fe) is successfully fabricated by a facile impregnation method and is used for sodium persulfate (SPS) activation. TiO2@MIL-101@SPS combines the advantages of photocatalysis and SPS activation, which shows high removal efficiency for nitrobenzene and methyl orange. In addition, the effect of multiple factors, including light source, SPS amount and catalyst amount, on nitrobenzene degradation have been investigated. Results show that the nitrobenzene degradation efficiency is up to 66.53 % while that of TOC removal is 32.21 % under 4-h visible light irradiation with 30 mg catalyst and 1.6 mM SPS. Moreover, LC-MS have been carried out to study the route of nitrobenzene degradation. Besides, ESR analysis reveals that both ●SO4- and ●OH radicals are generated sustainably under visible light irradiation, and more ●OH radicals can be detected owing to the synergic effect of photocatalysis and SPS activation. Interfacial charge transfer effect provides photoinduced electrons for the Fe3+/Fe2+ cycle in MIL-101(Fe), which boosts the SPS activation process, resulting in high photocatalytic activity.


Subject(s)
Metal-Organic Frameworks , Sulfates , Sodium Compounds , Titanium
18.
Zhongguo Zhong Yao Za Zhi ; 47(23): 6249-6255, 2022 Dec.
Article in Chinese | MEDLINE | ID: mdl-36604868

ABSTRACT

Gan-Yu-Hua-Huo syndrome(Live qi stagnation transforming into fire pattern) is one of the core contents of the theory of emotional diseases in traditional Chinese medicine(TCM). It is the key link of the pathogenesis change of emotion-related diseases and widely exists in the pathological process of various related diseases. However, due to the lack of animal models in line with the characteristics of TCM syndromes, the research on biomedical basis of Gan-Yu-Hua-Huo syndrome and study of Chinese medicines for soothing liver and purging fire have been restricted seriously. This study found that the pathological process of facial fire-heat symptoms of Gan-Yu-Hua-Huo syndrome was similar to the facial symptoms due to the emotional stress-induced latent herpes simplex virus-1(HSV-1) reactivation. Therefore, this study proposed that the emotional stress-induced latent HSV-1 activation be used to establish the animal model of Gan-Yu-Hua-Huo syndrome. In this study, the state-of-art literature in the field of Gan-Yu-Hua-Huo syndrome was summarized, and the experimental animal model of Gan-Yu-Hua-Huo syndrome was established from the perspective of emotional stress-induced latent HSV-1 reactivation to reveal the active substances, potential targets and pathways related to the pathological mechanism of the syndrome. This study was expected to provide reference and basis for the pharmacodynamic characterization of commonly used Chinese medicine for Gan-Yu-Hua-Huo syndrome in clinical practice.


Subject(s)
Herpesvirus 1, Human , Animals , Syndrome , Medicine, Chinese Traditional
19.
Materials (Basel) ; 14(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34832503

ABSTRACT

The mechanical properties and strength formation mechanism of cement-fly-ash-stabilized slag-coal gangue mixture were examined using an unconfined compressive strength test, splitting strength test, triaxial test, and scanning electron microscopy to solve the limitations of land occupation and environmental pollution that is caused by fly ash from the Xixia District thermal power plant in Yinchuan, slag from the Ningdong slag yard, and washed coal gangue. Its performance as a pavement base mixture on the road was investigated. The results demonstrated that as the slag replacement rate increased, the maximum water content increased while the maximum dry density decreased. The addition of slag reduced the unconfined compressive strength and splitting strength of the specimens; furthermore, the higher the slag substitution rate, the lower the unconfined compressive strength and splitting strength of the specimens. As the cement content increased, the specimen's unconfined compressive strength increased. Based on the principle of considering the mechanical properties and economic concerns, the slag replacement rate in the actual construction should be ~50% and should not exceed 75%. Based on the relationship between the compressive strength and splitting strength of ordinary concrete, the relationship model between the unconfined compressive strength and splitting strength of cement-fly-ash-stabilized slag-coal gangue was established. The failure mode, stress-strain curve, peak stress, and failure criterion of these specimens were analyzed based on the triaxial test results, and the relationship formulas between the slag substitution rate, cement content, peak stress, and confining pressure were fitted. As per the SEM results, the mixture's hydration products primarily included amorphous colloidal C-S-H, needle rod ettringite AFt, unhydrated cement clinker particles, and fly ash particles. The analysis of the mixture's strength formation mechanism showed that the mixture's strength was the comprehensive embodiment of all factors, such as the microaggregate effect, secondary hydration reaction, and material characteristics.

20.
ACS Appl Mater Interfaces ; 13(41): 48872-48880, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34632755

ABSTRACT

Lithium-sulfur (Li-S) batteries, as a prospective energy storage system, are still plagued by many problems that prevent them from their application, especially the low content of sulfur in the cathode. Herein, a cathode material with S up to 93 wt % is designed via a hollow donor-π-acceptor heterosystem, which combines catalytic sites, adsorption sites, and good conductivity together. Following this guidance, a hollow porous carbon sphere is prepared with CoO particles and single V atoms decorated on it (Co/V-HPCS), providing ultrahigh volumetric space for sulfur. Even the electrode made of sulfur-loaded Co/V-HPCS (Co/V-HPCS@S) has a high content of 90 wt % (sulfur content in the electrode is ∼83.5 wt %), and the cathode exhibits an excellent discharge capacity of 575.2 mAh g-1 under 0.2C after 100 cycles. With careful analysis by means of a high-resolution transmission electron microscope (HRTEM), the catalytic amounts of CoO particles and single V atoms loaded on the carbon shell are confirmed, which endows the material with outstanding catalytic ability to transfer sulfur and excellent adsorption of polysulfides. This concept of the cathode material increases the possibility of advanced long-life Li-S batteries with high tap density and high energy density.

SELECTION OF CITATIONS
SEARCH DETAIL
...