Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(7): 5945-5956, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38504504

ABSTRACT

Multivalent glycosidase inhibitors based on 1-deoxynojirimycin derivatives against α-glucosidases have been rapidly developed. Nonetheless, the mechanism based on self-assembled multivalent glucosidase inhibitors in living systems needs to be further studied. It remains to be determined whether the self-assembly possesses sufficient stability to endure transit through the small intestine and subsequently bind to the glycosidases located therein. In this paper, two amphiphilic compounds, 1-deoxynojirimycin and α-peptoid conjugates (LP-4DNJ-3C and LP-4DNJ-6C), were designed. Their self-assembling behaviors, multivalent α-glucosidase inhibition effect, and fluorescence imaging on living organs were studied. LP-4DNJ-6C exhibited better multivalent α-glucosidase inhibition activities in vitro. Moreover, the self-assembly of LP-4DNJ-6C could effectively form a complex with Nile red. The complex showed fluorescence quenching effect upon binding with α-glucosidases and exhibited potent fluorescence imaging in the small intestine. This result suggests that a multivalent hypoglycemic effect achieved through self-assembly in the intestine is a viable approach, enabling the rational design of multivalent hypoglycemic drugs.


Subject(s)
1-Deoxynojirimycin , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , 1-Deoxynojirimycin/pharmacology , alpha-Glucosidases/metabolism , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases , Glycoside Hydrolase Inhibitors/pharmacology
2.
Bioorg Chem ; 142: 106969, 2024 01.
Article in English | MEDLINE | ID: mdl-37988784

ABSTRACT

Nucleolus was an important cellular organelle. The abnormal morphology and number of the nucleolus have been considered as diagnostic biomarkers for some human diseases. However, the imaging agent based on nucleolus was limited. In this manuscript, a series of nucleolar fluorescent probes based on naphthalimide derivatives (NI-1 âˆ¼ NI-5) had been designed and synthesized. NI-1 âˆ¼ NI-5 could penetrate cell membranes and nuclear membranes, achieve clear nucleolar staining in living cells. These results suggested that the presence of amino groups on the side chains of naphthalimide backbone could enhance the targeting to the cell nucleolus. In addition, the molecular docking results showed that NI-1 âˆ¼ NI-5 formed hydrogen bonds and hydrophobic interactions with RNA, and exhibited enhanced fluorescence upon binding with RNA. These results will provide favorable support for the diagnosis and treatment of nucleolus-related diseases in the future.


Subject(s)
Cell Nucleolus , Naphthalimides , Humans , Cell Nucleolus/metabolism , Molecular Docking Simulation , RNA/metabolism
3.
Bioorg Chem ; 132: 106373, 2023 03.
Article in English | MEDLINE | ID: mdl-36681043

ABSTRACT

Synthetic glycoconjugates as chemical probes have been widely developed for the detection of glycosidase enzymes. However, the binding interactions between iminosugar derivatives and glycosidases were limited, especially for the binding interactions between multivalent glycosidase inhibitors and α-glycosidases. In this paper, three naphthalimide-DNJ conjugates were synthesized. Furthermore, the binding interactions and glycosidase inhibition effects of them were investigated. It was found that the strong binding interactions of multivalent glycosidase inhibitors with enzymes were related to the efficient inhibitory activity against glycosidase. Moreover, the lengths of the chain between DNJ moieties and the triazole ring for the naphthalimide-DNJ conjugates influenced the self-assembly properties, binding interactions and glycosidase inhibition activities with multisource glycosidases. Compound 13 with six carbons between the DNJ moiety and triazole ring showed the stronger binding interactions and better glycosidase inhibition activities against α-mannosidase (jack bean) and α-glucosidase (aspergillus niger). In addition, compound 13 showed an effective PBG inhibition effect in mice with 51.18 % decrease in blood glucose at 30 min. This result opens a way for detection of multivalent glycosidase inhibition effect by a fluorescent sensing method.


Subject(s)
Enzyme Inhibitors , Glycoside Hydrolases , Mice , Animals , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Naphthalimides/pharmacology , Fluorescence , alpha-Mannosidase
SELECTION OF CITATIONS
SEARCH DETAIL