Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38560961

ABSTRACT

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Subject(s)
Gout , Homeostasis , Hyperuricemia , Signal Transduction , Uric Acid , Humans , Gout/metabolism , Gout/drug therapy , Uric Acid/metabolism , Animals , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
2.
Aging (Albany NY) ; 15(9): 3738-3758, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37166418

ABSTRACT

Fibroblast activation protein-alpha (FAP) is a transmembrane serine protease involving in tissue remodeling. Previous studies report that FAP is highly expressed in certain tumors and participated in oncogenesis. However, there is still lack of systematic and in-depth analysis of FAP based on clinical big data. Here, we comprehensively map the FAP expression profile, prognostic outcome, genetic alteration, immune infiltration across over 30 types of human cancers through multiple datasets including TCGA, CPTAC, and cBioPortal. We find that FAP is up-regulated in most cancer types, and increased FAP expression is associated with advanced pathological stages or poor prognosis in several cancers. Furthermore, FAP is significantly correlated with the infiltration of cancer-associated fibroblasts, macrophages, myeloid dendritic cells, as well as endothelia cells. Immunosuppressive checkpoint proteins or cytokines expression, microsatellite instability and tumor mutational burden analysis also indicate the regulation role of FAP in tumor progression. Gene enrichment analysis demonstrates that ECM-receptor interaction as well as extracellular matrix and structure process are linked to the potential mechanism of FAP in tumor pathogenesis. The ceRNA network is also constructed and identified the involvement of LINC00707/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30e-5p/FAP, LINC02535/hsa-miR-30d-5p/FAP, as well as AC026356.1/hsa-miR-30d-5p/FAP axis in tumor progression. In conclusion, our study offers new insights into the oncogenic and immunological role of FAP from a pan-cancer perspective, providing new clues for developing novel targeted anti-tumor strategies.


Subject(s)
Membrane Proteins , MicroRNAs , Neoplasms , Serine Endopeptidases , Humans , Membrane Proteins/genetics , Neoplasms/genetics , Serine Endopeptidases/genetics
3.
Oxid Med Cell Longev ; 2022: 4525778, 2022.
Article in English | MEDLINE | ID: mdl-35464764

ABSTRACT

Migrasomes are migration-dependent membrane-bound vesicular structures that contain cellular contents and small vesicles. Migrasomes grow on the tips or intersections of the retraction fibers after cells migrate away. The process of releasing migrasomes into the extracellular space is named as "migracytosis". After releasing, they can be taken up by the surrounding cells, or rupture and further release their contents into the extracellular environment. Physiologically, migrasomes provide regional cues for organ morphogenesis during zebrafish gastrulation and discard the damaged mitochondria in response to mild mitochondrial stresses. Pathologically, migrasomes are released from podocyte during early podocyte stress and/or damage, from platelets after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), from microglia/macrophages of the ischemic brain, and from tumor necrosis factor α (TNFα)-activated endothelial cells (ECs); thus, this newly discovered extracellular vesicle is involved in all these pathological processes. Moreover, migrasomes can modulate the proliferation of cancer cell via lateral transferring mRNA and protein. In this review, we will summarize the biogenesis, release, uptake, and rupture of migrasomes and discuss its biological roles in development, redox signalling, innate immunity and COVID-19, cardio-cerebrovascular diseases, renal diseases, and cancer biology, all of these highlight the importance of migrasomes in modulating body homeostasis and diseases.


Subject(s)
COVID-19 , Zebrafish , Animals , Endothelial Cells , Homeostasis , Humans , SARS-CoV-2
4.
Front Neurol ; 11: 888, 2020.
Article in English | MEDLINE | ID: mdl-32982919

ABSTRACT

Objective: Synaptic plasticity is critical for neurorehabilitation after focal cerebral ischemia. Connexin 43 (Cx43), the main component of the gap junction, has been shown to be pivotal for synaptic plasticity. The objective of this study was to investigate the role of the Cx43 inhibitor (Gap26) and gap junction modifier (GAP-134) in neurorehabilitation and to study their contribution to synaptic plasticity after focal ischemia. Methods: Time course expression of both total and phosphorylated Cx43 (p-Cx43) were detected by western blotting at 3, 7, and 14 d after focal ischemia. Gap26 and GAP-134 were administered starting from 3 d post focal ischemia. Neurological performances were evaluated by balance beam walking test and Y-maze test at 1, 3, and 7 d. Golgi staining and transmission electron microscope (TEM) detection were conducted at 7 d for observing dendritic spine numbers and synaptic ultrastructure, respectively. Immunofluorescent staining was used at 7 d for detection of synaptic plasticity markers, including synaptophysin (SYN) and growth-associated protein-43 (GAP-43). Results: Expression levels of both total Cx43 and p-Cx43 were increased after focal cerebral ischemia, peaking at 7 d. Compared with the MCAO group, Gap26 worsened the neurological behavior and decreased the dendritic spine number while GAP-134 improved the neurobehavior and increased the number of dendritic spines. Moreover, Gap26 further destroyed the synaptic structure, concomitant with downregulated SYN and GAP-43, whereas GAP-134 alleviated synaptic destruction and upregulated SYN and GAP-43. Conclusion: These findings suggested that Cx43 or the gap junction was involved in synaptic plasticity, thereby promoting neural recovery after ischemic stroke. Treatments enhancing gap junctions may be potential promising therapeutic measures for neurorehabilitation after ischemic stroke.

5.
J Cardiovasc Pharmacol ; 76(5): 610-616, 2020 11.
Article in English | MEDLINE | ID: mdl-32833903

ABSTRACT

Resveratrol is well known to exhibit vascular relaxant and antihypertensive effects. In this study, we determined the effects of resveratrol on the modulation of cytosolic [Ca] level and adenosine 5'-triphosphate-induced Ca release from the sarcoplasmic reticulum (SR) in rat aortic smooth muscle cells (ASMCs) and explored its underlying mechanisms. In this article, cytosolic [Ca] and SR [Ca] in ASMCs were determined by Fluo-4/acetoxymethyl and Mag-Fluo-4/acetoxymethyl respectively. Resveratrol (20, 50, and 100 µM) caused a rapid and substantial reduction in cytosolic [Ca] in ASMCs bathed in normal Hank's Balanced Salt Solution or Ca-free Hank's Balanced Salt Solution. Pretreatment with resveratrol reduced adenosine 5'-triphosphate-induced SR Ca release and SR Ca content. In the cells bathed in Na-free physiological saline, which favors the reverse mode of the Na-Ca exchanger (NCX), resveratrol induced an increase in cytosolic [Ca] and SR [Ca]. However, its effect on cytosolic [Ca] was inhibited by the selective NCX inhibitor, SEA0400. Our findings suggest that resveratrol reduces cytosolic [Ca] and SR [Ca] in ASMCs in normal physiological saline, which might be, at least in part, mediated by the NCX.


Subject(s)
Calcium/metabolism , Cell Membrane/drug effects , Muscle, Smooth, Vascular/drug effects , Resveratrol/pharmacology , Sodium-Calcium Exchanger/agonists , Animals , Aorta/drug effects , Aorta/metabolism , Cell Membrane/metabolism , Cells, Cultured , Down-Regulation , Male , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Rats, Sprague-Dawley , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sodium-Calcium Exchanger/metabolism , Vasodilation/drug effects
6.
Front Pharmacol ; 8: 222, 2017.
Article in English | MEDLINE | ID: mdl-28487655

ABSTRACT

Cardiac hypertrophy is a major risk factor for heart failure, which are among the leading causes of human death. Gastrodin is a small molecule that has been used clinically to treat neurological and vascular diseases for many years without safety issues. In the present study, we examined protective effect of gastrodin against cardiac hypertrophy and explored the underlying mechanism. Phenylephrine and angiotensin II were used to induce cardiac hypertrophy in a mouse model and a cultured cardiomyocyte model. Gastrodin was found to alleviate the cardiac hypertrophy in both models. Mechanistically, gastrodin attenuated the store-operated Ca2+ entry (SOCE) by reducing the expression of STIM1 and Orai1, two key proteins in SOCE, in animal models as well as in cultured cardiomyocyte model. Furthermore, suppressing SOCE by RO2959, Orai1-siRNAs or STIM1-siRNAs markedly attenuated the phenylephrine-induced hypertrophy in cultured cardiomyocyte model. Together, these results showed that gastrodin inhibited cardiac hypertrophy and it also reduced the SOCE via its action on the expression of STIM1 and Orai1. Furthermore, suppression of SOCE could reduce the phenylephrine-induced cardiomyocyte hypertrophy, suggesting that SOCE-STIM1-Orai1 is located upstream of hypertrophy.

7.
Mol Med Rep ; 9(6): 2485-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24676712

ABSTRACT

Protectants and executioners have been demonstrated to be used by gap junctions in focal cerebral ischemia. Certain researchers hypothesized that the opposite role of gap junctions may be associated with the injury extent, which has been demonstrated to be highly correlated with occlusion duration. In order to examine this hypothesis directly, the effects of octanol, a frequently used drug, were examined to investigate the role of gap junctions, in rats following middle cerebral artery occlusion (MCAO) for 30 min/2 h and 24 h reperfusion, respectively. Octanol significantly reduced the infarct volume following 2 h of occlusion concomitant with lower neurological deficits, whereas it enlarged the infarct volume following 30 min of occlusion. Consistently, octanol attenuated the number of transferase dUTP nick-end labeling (TUNEL) positive neurons in the hippocampal CA1 region following 2 h of occlusion, while opposite effects were observed for 30 min of occlusion. Further immunohistochemical studies demonstrated that the expression of B-cell leukemia-2 (Bcl-2, anti-apoptotic protein) was upregulated and that Bcl-2-associated X (Bax, proapoptotic protein) was downregulated following 2 h of occlusion in the octanol group compared with the ischemic group. Conversely, octanol downregulated the expression of the Bcl-2 protein concomitant with increased Bax protein following 30 min of occlusion. These results indicated that the gap junction blocker octanol can protect against ischemic injury following long-term occlusion, however, can aggravate ischemic injury following short-term occlusion.


Subject(s)
Brain Ischemia/metabolism , Gap Junctions/drug effects , Octanols/pharmacology , Animals , Brain Ischemia/pathology , Brain Ischemia/physiopathology , Cerebral Infarction/metabolism , Cerebral Infarction/pathology , Cerebral Infarction/physiopathology , Gene Expression , Male , Octanols/administration & dosage , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Pyramidal Cells/metabolism , Rats , Time Factors , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
8.
Sheng Li Xue Bao ; 63(1): 20-4, 2011 Feb 25.
Article in English | MEDLINE | ID: mdl-21340430

ABSTRACT

Recent studies have shown that astrocytes play important roles in ATP degradation and adenosine (a well known analgesic molecule) generation, which are closely related to pain signaling pathway. The aim of this study was to investigate whether morphine, a well known analgesic drug, could affect the speeds of ATP enzymolysis and adenosine generation in rat astrocytes. Intracellular calcium concentration ([Ca(2+)](i)) of astrocyte was measured by flow cytometry, and the time points that morphine exerted notable effects were determined for subsequent experiments. Cultured astrocytes were pre-incubated with morphine (1 µmol/L) and then were incubated with substrates, ATP and AMP, for 30 min. The speeds of ATP enzymolysis and adenosine generation were measured by high performance liquid chromatography (HPLC). The results showed that both 1.5 and 48 h of morphine pre-incubation induced maximal ATP enzymolysis speed in astrocytes among all the time points, and there was no statistical difference of ATP enzymolysis speed between morphine treatments for 1.5 and 48 h. As to adenosine, morphine pre-incubation for 1.5 h statistically increased adenosine generation, which was degraded from AMP, in cultured astrocytes compared with control group. However, no difference of adenosine generation was observed after 48 h of morphine pre-incubation. These results indicate that treatment of morphine in vitro dynamically changes the concentrations of ATP and adenosine in extracellular milieu of astrocytic cells. In addition, astrocyte can be regarded as at least one of the target cells of morphine to induce changes of ATP and adenosine levels in central nervous system.


Subject(s)
Adenosine Triphosphate/metabolism , Adenosine/biosynthesis , Astrocytes/drug effects , Astrocytes/metabolism , Morphine/pharmacology , Analgesics, Opioid/pharmacology , Animals , Animals, Newborn , Astrocytes/cytology , Calcium/analysis , Calcium/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Rats , Rats, Sprague-Dawley
9.
Acta Pharmacol Sin ; 25(6): 744-50, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15169626

ABSTRACT

AIM: To investigate the changes of function of large conductance of calcium-activated potassium channels (BK(Ca) channels) in thoracic aortic smooth muscle cells in early stage of streptozotocin (STZ)-induced diabetic C57BL/6J mice. METHODS: Vascular muscle tension in the isolated thoracic aortic rings of mice was compared, and the role of BK(Ca) channels in relaxation of isolated mice thoracic aortic rings induced by acetylcholine (ACh) was determined. Meanwhile, single vascular smooth muscle cells (VSMCs) were isolated by collagenase, and BK(Ca) currents were recorded by patch-clamp single channel recording technique in symmetric high potassium solution. RESULTS: Tetraethylammonium (TEA) 1 mmol/L, a selective calcium-activated potassium channel blocker, caused significant rightward shift in the concentration-response curves of ACh in the isolated thoracic aortic rings of diabetic mice and pD2 value of ACh-induced relaxation was decreased notably after TEA treatment [(6.3+/-0.4) vs (6.9+/-0.5), n=10 rings from 7 mice, P<0.01]. But pD2 value of ACh-induced relaxation in age-matched control mice did not change in presence and absence of TEA 1 mmol/L [(6.4+/-0.15) vs (6.5+/-0.5), n=7 rings from 6 mice, P>0.05]. Furthermore, conductance of BK(Ca) channels in single thoracic aortic smooth muscle cells was decreased [(199+/-15) pS, n=10 cells from 7 mice vs (266+/-11) pS, n=12 cells from 6 mice, P<0.01], but probability of open of BKCa channels was increased [(0.51+/-0.28) vs (0.11+/-0.06), n=6 cells from 6 mice, P<0.01], and the mean closed time in diabetic mice was reduced [(15+/-15) vs (132+/-98), n=6 cells from 6 mice, P<0.05]. CONCLUSION: The opening of BK(Ca) channels was increased in thoracic aortic smooth muscle cells in the early stage of STZ-induced diabetic C57BL/6J mice by reducing mean closed time, but the conductance of BK(Ca) channels was decreased.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Muscle Relaxation/drug effects , Myocytes, Smooth Muscle/physiology , Potassium Channels, Calcium-Activated/physiology , Tetraethylammonium/pharmacology , Acetylcholine/antagonists & inhibitors , Animals , Aorta, Thoracic/drug effects , Cell Separation , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Potassium Channel Blockers/pharmacology , Potassium Channels, Calcium-Activated/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...