Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Photodiagnosis Photodyn Ther ; 48: 104238, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848883

ABSTRACT

BACKGROUND: Acne vulgaris is a species-specific human disease. To date, there has been no established human sebocyte cell line of Asian origin. Our previous study has demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in the treatment of acne vulgaris, primarily attributed to its cytotoxic properties; however, its regulatory mechanism remains largely unknown. OBJECTIVES: To establish an immortalized human sebocyte cell line derived from Chinese population and investigate the underlying mechanism of ALA-PDT. METHODS: Human primary sebocytes were transfected with the human tert gene (h­tert). The biological characteristics, including cell proliferation, cell markers, and sebum secretion function, were compared between primary sebocytes and the immortalized sebocytes (XL-i-20). Stimulations such as ALA-PDT, were applied respectively to both primary sebocytes and XL-i-20 cells to assess changes in their cellular functions. The transcriptome differences between primary sebocytes and XL-i-20 sebocytes were investigated using RNA-seq analysis. The XL-i-20 cell line was used to establish a sebaceous gland (SG) organoid culture, serving as a representative model of SG for the investigation of ALA-PDT. RESULTS: The h­tert immortalized sebocyte cell line exhibited the ability to be consecutively cultured for more than fifty passages. Both primary and immortalized cells expressed sebocyte markers such as epithelial membrane antigens (EMA, or MUC-1), Cytokeratin 7 (CK7) and adipose differentiation-related protein associated antigens (ADRP), and maintained sebum secretion function. The proliferative capacity of XL-i-20 was found to be significantly higher than that of primary sebocytes. The responses of XL-i-20 to ALA-PDT were indistinguishable from those elicited by primary sebocytes. Cell viability and sebum secretion were decreased after ALA-PDT in both two cell lines, and lipid-related proteins (SREBP-1/PPARγ) were down-regulated. The transcriptome data consistently demonstrated upregulation of genes related to inflammatory responses and downregulation of genes involved in lipid metabolism in both cell types following PDT. The analysis of common differential genes of primary sebocytes and XL-i-20 sebocytes post ALA-PDT showed that TNF signaling pathways, MAPK signaling pathways and JAK-STAT signaling pathways were activated. The SG organoids were spherical, which expressed markers of FANS and PLET1. Ki-67 was down-regulated after ALA-PDT. CONCLUSIONS: We have developed an h­tert immortalized sebocyte cell line from an Asian population. The cell line, XL-i-20, maintains the essential characteristics of its parent primary sebocytes. Moreover, XL-i-20 sebocyte exhibited a significant respond to ALA-PDT, demonstrating comparable phenotypic and molecular changes to primary sebocytes. Therefore, XL-i-20 and its derived SG organoid serve as appropriate in vitro models for investigating the efficacy and mechanisms of ALA-PDT in SG-related diseases.

2.
Phytomedicine ; 131: 155752, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833947

ABSTRACT

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE: This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS: Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS: In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION: Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.


Subject(s)
Carcinoma, Squamous Cell , Ferroptosis , Glutathione Transferase , Skin Neoplasms , Ferroptosis/drug effects , Animals , Skin Neoplasms/drug therapy , Humans , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , Mice , Glutathione Transferase/metabolism , Peroxiredoxins/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Mice, Inbred BALB C , Cell Proliferation/drug effects , Molecular Docking Simulation , Mice, Nude , Cell Movement/drug effects , Xenograft Model Antitumor Assays , Keratinocytes/drug effects , Chalcones
3.
Front Immunol ; 15: 1369626, 2024.
Article in English | MEDLINE | ID: mdl-38690273

ABSTRACT

Tertiary lymphoid structure (TLS) is an ectopic lymphocyte aggregate formed in peripheral non-lymphoid tissues, including inflamed or cancerous tissue. Tumor-associated TLS serves as a prominent center of antigen presentation and adaptive immune activation within the periphery, which has exhibited positive prognostic value in various cancers. In recent years, the concept of maturity regarding TLS has been proposed and mature TLS, characterized by well-developed germinal centers, exhibits a more potent tumor-suppressive capacity with stronger significance. Meanwhile, more and more evidence showed that TLS can be induced by therapeutic interventions during cancer treatments. Thus, the evaluation of TLS maturity and the therapeutic interventions that induce its formation are critical issues in current TLS research. In this review, we aim to provide a comprehensive summary of the existing classifications for TLS maturity and therapeutic strategies capable of inducing its formation in tumors.


Subject(s)
Neoplasms , Tertiary Lymphoid Structures , Humans , Tertiary Lymphoid Structures/immunology , Tertiary Lymphoid Structures/pathology , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Animals , Tumor Microenvironment/immunology , Germinal Center/immunology
4.
Clin Exp Dermatol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38641554

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) has been strongly recommended as an excellent alternative treatment for Bowen's disease (BD). However, reported data on 5-aminolevulinic acid-mediated PDT (ALA-PDT) with red light irradiation are limited and the long-term effectiveness remains to be determined, especially in dark-skinned populations. METHODS: Medical records of BD patients who received ALA-PDT with red light irradiation between February 2011 and June 2021 were reviewed and summarized. Univariate and multivariate analyses of clinically relevant variables that may affect treatment outcomes were performed to identify risk predictors. RESULTS: The overall clearance rate of 122 BD lesions was 89.3% with a median follow-up time of 36 months. The correlation between the effectiveness and fluorescence intensity of pre-PDT or PDT sessions was statistically significant after eliminating the interference of confounding factors. All recurrences occurred in the first two years following ALA-PDT. CONCLUSION: ALA-PDT is an effective treatment for BD in the skin of color patients. Well-executed operation and effective pre-treatment are the determinants of effectiveness. Fluorescence intensity of pre-PDT appeared to be a significant predictor of final effectiveness. In addition, two years of follow-up is necessary following ALA-PDT.

5.
Gastroenterol Rep (Oxf) ; 12: goae017, 2024.
Article in English | MEDLINE | ID: mdl-38524186

ABSTRACT

Background: Postoperative recurrence (POR) remains a major challenge for patients with Crohn's disease (CD). Gut microbial dysbiosis has been reported to be involved in the pathogenesis of POR. This study aims to investigate the relationship between fecal microbiome and endoscopic recurrence in patients with CD after ileocolonic resection. Methods: This is a cross-sectional study. Fecal samples were collected from 52 patients with CD after surgical intervention from 6 to 12 months before endoscopic examination. Endoscopic recurrence was defined as Rutgeerts score ≥ i2. The microbiome was analyzed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Results: A total of 52 patients were included and classified into POR (n = 27) and non-POR (n = 25) groups. Compared with the non-POR group, the POR group had a significantly lower community richness (Chao1 index: 106.5 vs 124, P = 0.013) and separated microbial community (P = 0.007 for Adonis, P = 0.032 for Anosim), combined with different distribution of 16 gut microbiotas and decrease of 11 predicted metabolic pathways (P < 0.05). Lactobacillus and Streptococcus were identified to closely correlate to non-POR (P < 0.05) after controlling for confounding factors. Kaplan-Meier analysis indicated that the patients with higher abundance of Streptococcus experienced longer remission periods (P < 0.01), but this was not for Lactobacillus. The predicted ethylmalonyl-coA pathway related to increased amount of succinate was positively correlated with Streptococcus (r > 0.5, P < 0.05). Conclusions: The characteristic alterations of fecal microbiota are associated with postoperative endoscopic recurrence in patients with CD; particularly, high abundance of Streptococcus may be closely related to endoscopic remission.

6.
Front Oncol ; 14: 1319819, 2024.
Article in English | MEDLINE | ID: mdl-38347841

ABSTRACT

Background: Extramammary Paget's disease (EMPD) is a rare cutaneous malignancy, commonly affecting the external genitalia and perianal area of the elderly with unclear pathogenesis. Metabolomics provides a novel perspective for uncovering the metabolic mechanisms of a verity of cancers. Materials and methods: Here, we explored the metabolome of EMPD using an untargeted strategy. In order to further investigate the potential relationship between metabolites and gene expression, we re-analyzed the gene expression microarray data (GSE117285) using differential expression analysis and functional enrichment analyses. Results: Results showed that a total of 896 metabolites were identified and 87 metabolites including 37 upregulated and 50 downregulated significantly in EMPD were sought out. In the following feature selection analyses, four metabolites, namely, cyclopentyl fentanyl-d5, LPI 17:0, guanosine-3',5'-cyclic monophosphate, kynurenine (KYN, high in EMPD) were identified by both random forest and support vector machine analyses. We then identified 1,079 dysfunctional genes: 646 upregulated and 433 downregulated in EMPD. Specifically, the tryptophan-degrading enzyme including indoleamine-2,3-dioxygenase-1 (IDO1) and tryptophan 2,3-dioxygenase (TDO2) were also increased. Generally, cancers exhibit a high expression of IDO1 and TDO2 to catabolize tryptophan, generating abundant KYN. Moreover, we also noticed the abnormal activation of sustaining proliferative signaling in EMPD. Conclusion: In conclusion, this study was the first to reveal the metabolome profile of EMPD. Our results demonstrate that IDO1/TDO2-initialized KYN metabolic pathway may play a vital role in the development and progression of EMPD, which may serve as a potential therapeutic target for treating EMPD.

7.
Int Immunopharmacol ; 129: 111636, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38364746

ABSTRACT

Rosacea is a long-term inflammatory skin disease associated with the dysfunction of vascular and immunological systems. Treatment options for rosacea are difficult to implement. Oroxylin A(OA), a traditional Chinese medicine, has anti-inflammation effects in a variety of inflammatory diseases. However, it is not known that whether OA exerts protective effects against LL-37-induced rosacea. In this study, bioinformatics analyses showed that the mechanisms of rosacea and the pharmacological targets of OA were highly overlapped. Subsequently, it was shown that the administration of OA resulted in a notable amelioration of rosacea-like skin lesions, as evidenced by a reduction in immune cell infiltration, modulation of cytokine production, and inhibition of angiogenesis. Plus, it was shown that OA effectively suppressed the generation of ROS generated by LL-37, as well as the subsequent activation of NF-κB signaling pathway. To explore further, we found that OA inhibited LL-37-induced ROS production via SIRT3-SOD2 signaling pathway in keratinocytes. Based on the aforementioned evidence, it can be inferred that OA exhibits a mitigating effect on the inflammatory response in rosacea by modulating the SIRT3-SOD2-NF-κB signaling pathway.


Subject(s)
Dermatitis , Flavonoids , Rosacea , Sirtuin 3 , Humans , NF-kappa B/metabolism , Sirtuin 3/metabolism , Reactive Oxygen Species/metabolism , Rosacea/drug therapy , Signal Transduction , Inflammation/drug therapy
8.
Environ Toxicol ; 39(1): 277-288, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37705238

ABSTRACT

Deoxynivalenol (DON) is a mycotoxin frequently occurring in human and animal food worldwide, which raises increasing public health concerns. In the present study, we used human keratinocytes (HaCaT cells) as an in vitro model to explore the cytotoxic effect of DON. The results showed that the cells exhibited varying degrees of damage, including decreased cell number and viability, cell shrinkage and floating, when treated with 0.125, 0.25, and 0.5 µg/mL DON for 6, 12, and 24 h, respectively. Furthermore, exposure to DON for 24 h significantly increased the lactate dehydrogenase (LDH) release and intracellular reactive oxygen species (ROS), and prominently decreased the superoxide dismutase (SOD) and catalase (CAT) activity. Additionally, DON exposure induced mitochondrial damage and cell apoptosis through reducing mitochondrial membrane potential. Then, we performed RNA-sequencing to investigate the molecular changes in HaCaT cells after DON exposure. The RNA-sequencing results revealed that DON exposure altered the gene expression involved in apoptosis, MAPK signaling pathway, and PI3K/Akt signaling pathway. Moreover, DON exposure significantly decreased the mRNA and protein expression of Bcl-2, and increased the mRNA and protein expression of Bax, Caspase 3 and COX-2, the protein expression of PI3K, and the phosphorylation levels of Akt, ERK, p38, and JNK. Taken together, these findings suggest that DON exposure could induce cell damage, oxidative stress, and apoptosis in HaCaT cells through the activation of PI3K/Akt and MAPK pathways.


Subject(s)
Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Humans , Antioxidants/metabolism , Apoptosis , Keratinocytes , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , RNA, Messenger/metabolism , Trichothecenes/adverse effects
9.
Biomed Pharmacother ; 170: 116003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091639

ABSTRACT

Deoxynivalenol (DON) is a common mycotoxic contaminant, frequently found in food and feed, causing a severe threat to human and animal health. Because of the widespread contamination of DON, humans involved in agricultural practices may be directly exposed to DON through the skin route. Chlorogenic acid (CGA) is a phenolic acid, which has anti-inflammatory and antioxidant properties. However, it is still unclear whether CGA can protect against DON-induced skin damage. Here, the effect of CGA on mitigating damage to human keratinocytes (HaCaT) triggered by DON, as well as its underlying mechanisms were investigated. Results demonstrated that DON exposure significantly decreased cell viability, and induced excessive mitochondrial reactive oxygen species (mtROS) generation, mitochondrial damage, oxidative stress, cell apoptosis and pyroptosis. However, CGA pretreatment for 2 h significantly increased cell viability and reversed DON-induced oxidative stress by improving antioxidant enzyme activities such as superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), reducing mtROS generation and enhancing mitochondrial function through activating Nrf2/HO-1 pathway. Moreover, CGA significantly increased the Bcl-2 protein expression, decreased the protein expressions of Bax and cleaved Caspase-3, and suppressed the phosphorylated of ERK, JNK, NF-κB. Further experiments revealed that CGA could also inhibit the pyroptosis-related protein expressions including NLRP3, cleaved Caspase-1, GSDMD-N, cleaved IL-1ß and IL-18. In conclusion, our results suggest that CGA could attenuate DON-induced oxidative stress, inflammation, and apoptosis by activating the Nrf2/HO-1 pathway and inhibiting MAPK/NF-κB/NLRP3 pathway. CGA might be a novel promising therapeutic agent for alleviating the dermal damage triggered by DON.


Subject(s)
NF-kappa B , Pyroptosis , Animals , Humans , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Oxidative Stress , Apoptosis , Keratinocytes/metabolism
10.
Skin Res Technol ; 29(10): e13497, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881057

ABSTRACT

BACKGROUND: Extramammary Paget's disease (EMPD) is a rare cutaneous malignant tumor with a high recurrence rate after surgery. However, the genetic and epigenetic alterations underlying its pathogenesis remain unknown. DNA methylation is an important epigenetic modification involved in many biological processes. METHODS: In this study, enzymatic methyl-sequencing (EM-seq) technique was used to investigate the landscape of genome-wide DNA methylation from three pairs of tumor tissues and adjacent tissues of patients with EMPD. Additionally, we conducted histopathological examinations to assess the expression of fatty acid-binding protein 5 (FABP5) in another three paired samples from EMPD patients. RESULTS: The cluster analysis showed the good quality of the samples. A differential methylation region (DMR) heat map was used to quantitatively characterize genome-wide methylation differences between tumors and controls. Global DNA methylation level is lower in EMPD tissue compared to matched controls, indicating that DNA methylation discriminates between tumor and normal skin. And the top hypomethylation gene on the promoter region in tumor tissues was FABP5 on chromosome 8 with 38.44% decreased median methylation. We next identified the expression of FABP5 in paired tumors and adjacent tissues in three additional patients with EMPD. Immunofluorescence results showed FABP5 highly expressed in tumor tissues and co-located with CK7, CK20 and EMA. GO and KEGG enrichment analysis showed DMR genes on promoter are mainly enriched in the calcium ion transport, GTPase mediated signal transduction, Rap1 signaling pathway and GnRH signaling pathway. CONCLUSION: Taken together, our findings provide the first description of the whole genome methylation map of EMPD and identify FABP5 as a pathogenic target of EMPD.


Subject(s)
Paget Disease, Extramammary , Skin Neoplasms , Humans , Paget Disease, Extramammary/genetics , Paget Disease, Extramammary/metabolism , Paget Disease, Extramammary/pathology , Methylation , Skin Neoplasms/pathology , Epigenesis, Genetic/genetics , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism
12.
Front Immunol ; 14: 1183709, 2023.
Article in English | MEDLINE | ID: mdl-37404811

ABSTRACT

Background: The immune microenvironment plays a critical role in maintaining skin homeostasis, which is closely related to the dysfunction in photoaged skin such as autoimmunity and tumorigenesis. Several recent studies have demonstrated the efficacy of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in alleviating photoaging and skin cancer. However, the underlying immune mechanisms and the immune microenvironment change by ALA-PDT remain largely unknown. Methods: To illustrate the effects of ALA-PDT on immune microenvironment in photoaged skin, single cell RNA sequencing (scRNA-seq) analysis of photoaged skin on the extensor side of the human forearm before and after ALA-PDT was performed. R-packages of Seurat, clusterProfiler, Monocle, CellChat were used for cell clustering, differentially expressed genes analysis, functional annotation, pseudotime analysis and cell-cell communication analysis. The gene sets related to specific functions were extracted from the MSigDB database, which were used to score the functions of immune cells in different states. We also compared our result with published scRNA-seq data of photoaged skin of the eyelids. Results: The increase score of cellular senescence, hypoxia and reactive oxygen species pathway in immune cells and the decrease of immune receptor activity function and proportion of naive T cells were found in skin photoaging. Moreover, the function of T cell ribosomal synthesis was also impaired or down regulated and function of G2M checkpoint was up regulated. However, ALA-PDT showed promising results in reversing these effects, as it improved the above functions of T cells. The ratio of M1/M2 and percentage of Langerhans cells also decreased with photoaging and increased after ALA-PDT. Additionally, ALA-PDT restored the antigen presentation and migration function of dendritic cells and enhanced cell-cell communication among immune cells. These effects were observed to last for 6 months. Conclusion: ALA-PDT has potential to rejuvenate immune cells, partially reversed immunosenescence and improved the immunosuppressive state, ultimately remodelling the immune microenvironment in photoaged skin. These results provide an important immunological basis for further exploring strategies to reverse skin photoaging, chronological aging and potentially systemic aging.


Subject(s)
Photochemotherapy , Skin Neoplasms , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Skin/metabolism , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Skin Neoplasms/drug therapy , Tumor Microenvironment/genetics
13.
AMB Express ; 13(1): 52, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37249811

ABSTRACT

Deoxynivalenol (DON) is one of the most prevalent mycotoxin contaminants, which posing a serious health threat to animals and humans. Previous studies have found that individually supplemented probiotic or glycyrrhinic acid (GA) could degrade DON and alleviate DON-induced cytotoxicity. The present study investigated the effect of combining GA with Saccharomyces cerevisiae (S. cerevisiae) and Enterococcus faecalis (E. faecalis) using orthogonal design on alleviating IPEC-J2 cell damage induced by DON. The results showed that the optimal counts of S. cerevisiae and E. faecalis significantly promoted cell viability. The optimal combination for increasing cell viability was 400 µg/mL GA, 1 × 106 CFU/mL S. cerevisiae and 1 × 106 CFU/mL E. faecalis to make GAP, which not only significantly alleviated the DON toxicity but also achieved the highest degradation rate of DON (34.7%). Moreover, DON exposure significantly increased IL-8, Caspase3 and NF-κB contents, and upregulated the mRNA expressions of Bax, Caspase 3, NF-κB and the protein expressions of Bax, TNF-α and COX-2. However, GAP addition significantly reduced aforementioned genes and proteins. Furthermore, GAP addition significantly increased the mRNA expressions of Claudin-1, Occludin, GLUT2 and ASCT2, and the protein expressions of ZO-1, Claudin-1 and PePT1. It was inferred that the combination of GA, S. cerevisiae, and E. faecalis had the synergistic effect on enhancing cell viability and DON degradation, which could protect cells from DON-induced damage by reducing DON cytotoxicity, alleviating cell apoptosis and inflammation via inhibiting NF-κB signaling pathway, improving intestinal barrier function, and regulating nutrient absorption and transport. These findings suggest that GAP may have potential as a dietary supplement for livestock or humans exposed to DON-contaminated food or feed.

14.
Anticancer Agents Med Chem ; 23(13): 1596-1604, 2023.
Article in English | MEDLINE | ID: mdl-37056067

ABSTRACT

BACKGROUND: Tripterygium wilfordii Hook F provided the source of the first diterpenoid triepoxide lactone, Triptolide, identified as the primary constituent causing the anticancer activity. So far, it has not been reported whether triptolide has a therapeutic effect on cutaneous squamous cell carcinoma (cSCC). OBJECTIVE: This study investigates the triptolide's therapeutic impact on cSCC both in vitro and in vivo and investigates the triptolide's potential involvement in signaling pathways. METHODS: The CCK-8 assays, wound healing assays, and colony formation assays were used to assess the effects of triptolide on the proliferation and migration of cSCC cells. The alteration in gene expression following triptolide treatment was shown by RNA sequencing. Flow cytometry was then applied to evaluate cell apoptosis. Western blot was used to find the associated proteins' expressions. The effectiveness of triptolide was then evaluated in vivo using a xenograft model, and histological staining was employed to determine the visceral toxicity. RESULTS: Triptolide greatly reduces the migratory and proliferative capacity of cSCC cells. Triptolide dramatically decreased cell viability and migration in the A431 and SCL-1 cells compared to the control group, according to the CCK8 assay, wound healing assay, and colony formation assay. Flow cytometry demonstrated that treatment with 10- 40 nM triptolide increased apoptosis in a concentration-dependent manner, with a statistically significant difference. Furthermore, mice given triptolide had smaller tumor sizes than those in the control group. Triptolide treatment drastically altered the expression of autophagic and apoptotic proteins. The considerable reduction in the proteins Akt and mTOR levels further illustrated the critical function of triptolide in cSCC. CONCLUSION: Triptolide caused cSCC cells to engage in autophagy and apoptosis by inhibiting the Akt/mTOR signaling pathways. Triptolide may be a possible antitumor agent for the treatment of cSCC.


Subject(s)
Carcinoma, Squamous Cell , Diterpenes , Skin Neoplasms , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation , Skin Neoplasms/drug therapy , TOR Serine-Threonine Kinases/metabolism , Apoptosis , Diterpenes/pharmacology , Autophagy , Cell Line, Tumor
15.
Ecotoxicol Environ Saf ; 256: 114901, 2023 May.
Article in English | MEDLINE | ID: mdl-37054475

ABSTRACT

Deoxynivalenol (DON) can affect health and growth performance of pigs, resulting in significant economic losses in swine production. The aim of this study was to investigate the effect of glycyrrhizic acid combined with compound probiotics, i.e. Enterococcus faecalis plus Saccharomyces cerevisiae (GAP) on improving growth performance, intestinal health and its fecal microbiota composition change of piglets challenged with DON. A total of 160 42-day-old weaned piglets (Landrace × Large White) were used and the experimental period was 28 d. The results showed that supplementing GAP in the diet significantly improved the growth performance of piglets challenged with DON and alleviate DON-induced intestinal damage by reducing ALT, AST and LDH concentrations in serum, increasing the morphological parameters of jejunum, and decreasing DON residues in serum, liver and feces. Moreover, GAP could significantly decrease the expressions of inflammation and apoptosis genes and proteins (IL-8, IL-10, TNF-α, COX-2, Bax, Bcl-2 and Caspase 3), and increase the expressions of tight-junction proteins and nutrient transport factor genes and proteins (ZO-1, Occludin, Claudin-1, ASCT2 and PePT1). In addition, it was also found that GAP supplementation could significantly increase the diversity of gut microbiota, maintain microbial flora balance and promote piglet growth by significantly increasing the abundance of beneficial bacterium such as Lactobacillus and reducing the abundance of harmful bacterium such as Clostridium_sensu_stricto_1. In conclusion, GAP addition to piglet diets contaminated with DON could significantly promote the health and growth performance of piglets though alleviating DON-induced hazards. This study provided a theoretical basis for the application of GAP to alleviate DON toxicity for animals.


Subject(s)
Probiotics , Trichothecenes , Swine , Animals , Glycyrrhizic Acid/pharmacology , Intestines
16.
Photodiagnosis Photodyn Ther ; 42: 103332, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36796744

ABSTRACT

BACKGROUND AND OBJECTIVES: Although most cutaneous squamous cell carcinoma (cSCC) cases are generally nonlethal and manageable with surgical excision, there ares till significant hazards for patients who are ineligible for surgical resection. We sought to find a suitable and effective treatment for cSCC. METHODS: We modified chlorin e6 by adding a hydrogen chain with a six-carbon ring to the benzene ring and named this new photosensitizer as STBF. We first investigated the fluorescence characteristics, cellular uptake of STBF and subcellular localization. Next, cell viability was detected by CCK-8 assay and the TUNEL staining was performed. Akt/mTOR-related proteins were examined by western blot. RESULTS: STBF-photodynamic therapy (PDT) inhibits cSCC cells viability in a light dose dependent manner. The antitumor mechanism of STBF-PDT might be due to the suppression of the Akt/mTOR signaling pathway. Further animal investigation determined that STBF-PDT led to a marked reduction in tumor growth. CONCLUSIONS: Our results suggest that STBF-PDT exerts significant therapeutic effects in cSCC. Thus, STBF-PDT is expected to be a promising method for the treatment of cSCC and the photosensitizer STBF may be destined for a wider range of applications in photodynamic therapy.


Subject(s)
Carcinoma, Squamous Cell , Photochemotherapy , Porphyrins , Skin Neoplasms , Animals , Photosensitizing Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Proto-Oncogene Proteins c-akt , Photochemotherapy/methods , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation , Cell Line, Tumor
17.
Inflamm Bowel Dis ; 29(6): 850-865, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36715181

ABSTRACT

BACKGROUND: Creeping fat (CrF) has been recognized to play a positive role in Crohn's disease (CD) progression, yet the cellular compositions within mesenteric adipose tissue (MAT) and their potential mechanism in CrF formation are poorly understood. METHODS: Analysis of 10X single-cell RNA sequencing was performed on 67 064 cells from 3 pairs of surgically resected samples of CrF and their uninvolved MAT. The results were validated in another cohort with 6 paired MAT samples by immunofluorescence. RESULTS: All samples manifested excellent consistency and repeatability in our study, and 10 cell types from the transcriptome atlas, including 20 clusters, were identified. In CrF, a specific vascular endothelial cell subpopulation highly expressing lipoprotein lipase was first identified, with a significantly increased proportion. This vascular endothelial cell subpopulation manifested robust peroxisome proliferator-activated receptor γ (PPARγ) transcription activity and an upregulated PPAR signaling pathway and was involved in lipid metabolism and the antibacterial response. A novel fibroblast subpopulation (FC3) with remarkable GREM1 and RFLNB expression was identified and validated to predominantly accumulate in the CrF. The FC3 was annotated as inflammation-associated fibroblasts, which are characterized by inflammatory responses and the regulation of Smad phosphorylation related to intestinal fibrosis. The trajectory of fibroblasts revealed their pro-inflammatory and profibrotic conversion tendency during CrF formation with corresponding gene dynamics. Additionally, we unprecedently dissected the different origins and functions of 6 macrophage subclusters within the myeloid compartment. CONCLUSIONS: Our results uncover the cellular heterogeneity in the MAT of CD and the role of these various cellular compositions in CrF development. This comprehensive understanding of CrF provides future directions for in-depth research on and potential targets for MAT-based treatment.


This is the first study that provides a comprehensive single-cell transcriptomic atlas in mesenteric adipose tissue (MAT) of Crohn's disease and elaborates the functional diversity and dynamic changes of the cellular components during creeping fat (CrF) formation.


Subject(s)
Crohn Disease , Humans , Crohn Disease/genetics , Crohn Disease/metabolism , Intestines , Adipose Tissue/metabolism , Inflammation/metabolism
18.
Biochem Pharmacol ; 208: 115403, 2023 02.
Article in English | MEDLINE | ID: mdl-36592708

ABSTRACT

Severe acne vulgaris is a common chronic inflammatory skin disease worldwide. 5-Aminolaevulinic acid photodynamic therapy (ALA-PDT) is effective and safe for severe acne. However, the mechanism is not fully understood. Intense acute inflammatory response at 24 h after ALA-PDT is reported positively correlated to the effectiveness. Inflammation regulation influence the progression or outcome of diseases. ALA-PDT may exert its therapeutic effect by augmenting intense inflammation and break the chronic inflammation. This study was set out to explore the mechanism of ALA-PDT augmenting intense acute inflammation in the treatment of acne. As a result, transcriptome microarrays analysis of severe acne patients showed that ALA-PDT significantly up-regulated expression of various inflammation-related genes, especially TREM1 and PTGS2, which were further confirmed by a C.acnes induced acne-like mouse ear model. The subsequent experiments demonstrated that ALA-PDT could trigger pro-inflammatory M1 polarization of macrophages in vitro and in vivo. Additionally, the crosstalk between keratinocytes and macrophages studied by a transwell co-culture system indicated that PGE2 secreted by ALA-PDT treated HaCaT cells could promote THP-1 macrophages M1 polarization by COX2/PGE2/TLR4/TREM1 axis to augment inflammation. Our study provides a novel insight that ALA-PDT could amplify inflammation by COX2/TREM1 mediated macrophages M1 polarization for the treatment of acne. It is hoped that this research will decipher the mechanism of ALA-PDT for the treatment of acne and provide a theoretical basis for optimizing the clinical ALA-PDT management.


Subject(s)
Acne Vulgaris , Photochemotherapy , Animals , Mice , Photosensitizing Agents , Cyclooxygenase 2/genetics , Dinoprostone , Triggering Receptor Expressed on Myeloid Cells-1 , Aminolevulinic Acid/pharmacology , Aminolevulinic Acid/therapeutic use , Acne Vulgaris/drug therapy , Inflammation/drug therapy , Macrophages , Treatment Outcome
19.
Biomed Pharmacother ; 157: 114091, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36481403

ABSTRACT

Rosacea is a facial chronic inflammatory skin disease with dysfunction of immune and neurovascular system and treatments for rosacea are challenging. N-3 polyunsaturated fatty acids (PUFAs), one of essential fatty acids, are needed for health maintenance and exert anti-inflammation and immunomodulatory effects in a series of cutaneous diseases such as atopic dermatitis and photoaging through dietary supplementation. However, the role of n-3 PUFAs on rosacea remains to be elucidated. In this study, KEGG enrichment analysis and GO analysis indicated that the biological process and signaling pathways, including chemokine signaling pathway, regulated by n-3 PUFAs highly overlapped with those in the pathogenic biological process of rosacea, especially the erythema telangiectasia type. Next, mice were randomized to fed with a customized n-3 PUFAs diet. We showed that n-3 PUFAs ameliorated skin erythema, inhibited dermal inflammatory cell infiltration (mast cells, neutrophils, and CD4 +T cells) and suppressed elevated pro-inflammatory cytokines in LL37-induced rosacea-like mice. Besides, n-3 PUFAs were also verified to repress angiogenesis in LL37-induced mice skin. Further investigation revealed that n-3 PUFAs attenuated LL37-induced inflammation via TLR2/ MyD88/ NF-κB pathway both in mice and in keratinocytes. In conclusion, our findings underscore that dietary supplementation of n-3 PUFAs have the potential to become an efficient and safe clinical therapeutic candidate for rosacea.


Subject(s)
Fatty Acids, Omega-3 , Rosacea , Animals , Mice , Dietary Supplements , Erythema , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Rosacea/chemically induced , Rosacea/drug therapy , Toll-Like Receptor 2/metabolism
20.
Toxins (Basel) ; 14(12)2022 12 04.
Article in English | MEDLINE | ID: mdl-36548753

ABSTRACT

Deoxynivalenol (DON) is a widespread mycotoxin that affects the intestinal health of animals and humans. In the present study, we performed RNA-sequencing and 16S rRNA sequencing in piglets after DON and glycyrrhizic acid and compound probiotics (GAP) supplementation to determine the changes in intestinal transcriptome and microbiota. Transcriptome results indicated that DON exposure altered intestinal gene expression involved in nutrient transport and metabolism. Genes related to lipid metabolism, such as PLIN1, PLIN4, ADIPOQ, and FABP4 in the intestine, were significantly decreased by DON exposure, while their expressions were significantly increased after GAP supplementation. KEGG enrichment analysis showed that GAP supplementation promoted intestinal digestion and absorption of proteins, fats, vitamins, and other nutrients. Results of gut microbiota composition showed that GAP supplementation significantly improved the diversity of gut microbiota. DON exposure significantly increased Proteobacteria, Actinobacteria, and Bacillus abundances and decreased Firmicutes, Lactobacillus, and Streptococcus abundances; however, dietary supplementation with GAP observably recovered their abundances to normal. In addition, predictive functions by PICRUSt analysis showed that DON exposure decreased lipid metabolism, whereas GAP supplementation increased immune system. This result demonstrated that dietary exposure to DON altered the intestinal gene expressions related to nutrient metabolism and induced disturbances of intestinal microbiota, while supplementing GAP to DON-contaminated diets could improve intestinal health for piglets.


Subject(s)
Microbiota , Probiotics , Humans , Animals , Swine , Glycyrrhizic Acid/pharmacology , RNA, Ribosomal, 16S/genetics , Transcriptome , Intestines , Probiotics/pharmacology , Dietary Supplements
SELECTION OF CITATIONS
SEARCH DETAIL
...