Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Heliyon ; 10(7): e28179, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560115

ABSTRACT

Green innovation is pivotal for global sustainability, with state-owned capital playing a significant role, especially in the Chinese corporate landscape. This study, spanning 2008 to 2020 and leveraging a comprehensive dataset of listed companies, explores the intricate relationship between state-owned capital and the quality of green innovation in Chinese private enterprises. Motivated by the imperative to address crucial issues in green innovation quality in China, this research utilizes empirical data to uncover the mechanisms through which state-owned capital fosters green innovation. The study reveals how state-owned capital optimizes internal governance structures and reinforces environmental consciousness within private firms. Findings underscore the crucial role of state-owned capital in enhancing the quality of green innovation in private enterprises, operating through two primary mechanisms. Firstly, state-owned capital cultivates a heightened inclination towards green innovation within these firms. Secondly, it facilitates the adoption of enhanced internal governance practices, catalyzing the development of high-quality green innovation projects. A battery of mechanism tests provides robust evidence that state-owned capital enhances environmental awareness, restrains self-serving behaviors among major shareholders, mitigates financing constraints, and amplifies the motivation and capability of private enterprises for green innovation. This multifaceted approach ultimately fosters high-quality green innovation within companies. The study reveals the subtle interplay between state capital and private sector green innovation, highlighting its relevance to policymaking and practical considerations. It provides valuable insights into the ongoing pursuit of sustainability and the integration of green practices into the corporate world.

2.
Sensors (Basel) ; 24(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38676021

ABSTRACT

This study develops an adaptive sliding mode control approach for a drilling tool attitude adjustment system, aiming at solving the problems of model uncertainties and insufficient ability of disturbance suppression during the regulation behavior. To further improve the performance of the position-tracking loop in terms of response time, tracking accuracy, and robustness, a state observer based on an improved radial basis function is designed to approximate the model uncertainties, a valve dead-zone compensate controller is used to reduce control deviation, an adaptive sliding mode controller is designed to improve the position-tracking precision and attenuate sliding mode chattering. Finally, simulation and experimental results are carried out to verify the observability of the model uncertainties and position-tracking errors of the drilling tool attitude adjustment system, which can effectively improve the position-tracking performance and robustness of the drilling tool attitude adjustment system.

3.
Front Pharmacol ; 15: 1298181, 2024.
Article in English | MEDLINE | ID: mdl-38318147

ABSTRACT

The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.

4.
Front Cell Neurosci ; 17: 1163764, 2023.
Article in English | MEDLINE | ID: mdl-37937262

ABSTRACT

Introduction: Macrophages or T-lymphocytes triggered inflammation and, consequently, activated glial cells may contribute to neuroinflammation and neurotransmitter dysfunction in schizophrenia (SZ), while omega(n)-3 polyunsaturated fatty acids (PUFAs) can attenuate some SZ symptoms through anti-inflammatory effects. However, the correlations between macrophage/T-lymphocyte-produced cytokines and glia phenotypes, between inflammatory status and PUFAs composition, between cytokines and neurotransmitter function, and between n-3 PUFAs and neurotransmitter abnormality in SZ are unclear. Methods: Changes in T-helper (h) patterns, peripheral macrophage/glial markers, PUFAs profile, membrane fluidity, and neurotransmitter functions were evaluated in SZ patients (n = 50) and healthy controls (n = 30) using ELISA, gas chromatography, fluorescence anisotropy techniques, and HPLC, respectively. Results: Compared to the control, blood lymphocyte proliferation, the concentration of macrophage/microglia phenotype M1 markers, including cytokines IL-1ß, TNF-α (Th1) and IL-6 (Th2), and astrocyte phenotype A1 marker S100ß was significantly increased, while IL-17 and n-3 PUFAs contents, n-3/n-6 ratio, and membrane fluidity (FLU) were significantly decreased in SZ. Moreover, increased DA and HVA, decreased 5-HT and NE, and their metabolites appeared in SZ. Moreover, negative correlations between IL-6 and A2 marker Brain-Derived Neurotrophic Factor (BDNF) or n-3 PUFAs EPA and between IL-1ß and FLU or 5HIAA, while positive correlations between EPA and 5-HIAA and between FLU and DHA were found in SZ. Discussion: These findings showed (1) no clear Th pattern, but pro-inflammatory-dominant immunity occurred; (2) the pro-inflammatory pattern may result in the activated microglia M1 and astrocyte A1 phenotype; and (3) increased pro-inflammatory cytokines were related to decreased n-3 PUFA and decreased membrane fluidity and dysfunctional neurotransmitter systems in SZ.

5.
Environ Pollut ; 334: 122185, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37442325

ABSTRACT

Magnetic biochar had been used for the bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sediments. However, the long-term remediation pattern of vertical stratification driven by the application of magnetic biochar and the assembly of microbes had received little attention. In this study, magnetic loofah sponge biochar (MagLsBC), magnetic iron oxide (MagOx) and magnetic coconut shell activated carbon (MagCoAC) were applied for the 900-day remediation of contaminated sediments. Significant (p < 0.05) PAH biodegradation was observed in both the surface and subsurface sediments with MagLsBC addition. However, enhanced PAH biodegradation was observed only in the surface sediments with MagOx and MagCoAC treatments. Magnetotactic bacteria (Magnetococcus) was dominant genera in surface sediments and indigenous PAH degradation bacteria were more abundant in subsurface sediments of MagLsBC relative to other bacterial communities. The network interaction between microbes in surface and subsurface sediments with MagLsBC treatments was a less complex and tighter than those with MagCoAC, MagOx or Control treatments. Long-distance electron transfer rates could be enhanced through cooperation between magnetotactic bacteria and indigenous degradation bacteria, thus accelerating PAH degradation in sediment with MagLsBC treatment, especially in the underlying sediment.


Subject(s)
Luffa , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Charcoal/metabolism , Luffa/metabolism , Biodegradation, Environmental , Bacteria/metabolism , Magnetic Phenomena , Geologic Sediments/microbiology
6.
Int J Mol Sci ; 24(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37373491

ABSTRACT

GDSL esterases/lipases are a subclass of lipolytic enzymes that play critical roles in plant growth and development, stress response, and pathogen defense. However, the GDSL esterase/lipase genes involved in the pathogen response of apple remain to be identified and characterized. Thus, in this study, we aimed to analyze the phenotypic difference between the resistant variety, Fuji, and susceptible variety, Gala, during infection with C. gloeosporioides, screen for anti-disease-associated proteins in Fuji leaves, and elucidate the underlying mechanisms. The results showed that GDSL esterase/lipase protein GELP1 contributed to C. gloeosporioides infection defense in apple. During C. gloeosporioides infection, GELP1 expression was significantly upregulated in Fuji. Fuji leaves exhibited a highly resistant phenotype compared with Gala leaves. The formation of infection hyphae of C. gloeosporioides was inhibited in Fuji. Moreover, recombinant His:GELP1 protein suppressed hyphal formation during infection in vitro. Transient expression in Nicotiana benthamiana showed that GELP1-eGFP localized to the endoplasmic reticulum and chloroplasts. GELP1 overexpression in GL-3 plants increased resistance to C. gloeosporioides. MdWRKY15 expression was upregulated in the transgenic lines. Notably, GELP1 transcript levels were elevated in GL-3 after salicylic acid treatment. These results suggest that GELP1 increases apple resistance to C. gloeosporioides by indirectly regulating salicylic acid biosynthesis.


Subject(s)
Colletotrichum , Malus , Esterases/genetics , Esterases/metabolism , Lipase/metabolism , Malus/genetics , Malus/metabolism , Colletotrichum/genetics , Plant Leaves/metabolism , Salicylic Acid/pharmacology , Plant Diseases/genetics
7.
ACS Omega ; 8(20): 18128-18139, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251132

ABSTRACT

Doxorubicin (DOX) is a broad-spectrum chemotherapeutic drug used in clinical treatment of malignant tumors. It has a high anticancer activity but also high cardiotoxicity. The aim of this study was to explore the mechanism of Tongmai Yangxin pills (TMYXPs) in ameliorating DOX-induced cardiotoxicity through integrated metabolomics and network pharmacology. In this study, first, an ultrahigh-performance liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) metabonomics strategy was established to obtain metabolite information and potential biomarkers were determined after data processing. Second, network pharmacological analysis was used to evaluate the active components, drug-disease targets, and key pathways of TMYXPs to alleviate DOX-induced cardiotoxicity. Targets from the network pharmacology analysis and metabolites from plasma metabolomics were jointly analyzed to select crucial metabolic pathways. Finally, the related proteins were verified by integrating the above results and the possible mechanism of TMYXPs to alleviate DOX-induced cardiotoxicity was studied. After metabolomics data processing, 17 different metabolites were screened, and it was found that TMYXPs played a role in myocardial protection mainly by affecting the tricarboxylic acid (TCA) cycle of myocardial cells. A total of 71 targets and 20 related pathways were screened out with network pharmacological analysis. Based on the combined analysis of 71 targets and different metabolites, TMYXPs probably played a role in myocardial protection through regulating upstream proteins of the insulin signaling pathway, MAPK signaling pathway, and p53 signaling pathway, as well as the regulation of metabolites related to energy metabolism. They then further affected the downstream Bax/Bcl-2-Cyt c-caspase-9 axis, inhibiting the myocardial cell apoptosis signaling pathway. The results of this study may contribute to the clinical application of TMYXPs in DOX-induced cardiotoxicity.

8.
Behav Brain Res ; 443: 114353, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36822513

ABSTRACT

BACKGROUND: Emerging evidence suggests that the DOCK4 gene increases susceptibility to schizophrenia. However, no study has hitherto repeated this association in Chinese, and further investigated the relationship between DOCK4 and clinical symptoms in schizophrenic patients using clinical scales and functional magnetic resonance imaging (fMRI). METHODS: In this study, we genotyped three single nucleotide polymorphisms (SNPs) (rs2074127, rs2217262, and rs2074130) within the DOCK4 gene using a case-control design (including 1289 healthy controls and 1351 patients with schizophrenia). 55 first-episode schizophrenia (FES) patients and 59 healthy participants were divided by the genotypes of rs2074130 into CC and CT+TT groups. We further investigated the association with clinical symptoms and neural characteristics (brain activation/connectivity and nodal network metrics). RESULTS: Our results showed significant associations between all selected SNPs and schizophrenia (all P < 0.05). In patients, letter fluency and motor speed scores of T allele carriers were significantly higher than the CC group (all P < 0.05). Interestingly, greater brain activity, functional connectivity, and betweenness centrality (BC) in language processing and motor coordination were also observed in the corresponding brain zones in patients with the T allele based on a two-way ANCOVA model. Moreover, a potential positive correlation was found between brain activity/connectivity of these brain regions and verbal fluency and motor speed. CONCLUSION: Our findings suggest that the DOCK4 gene may contribute to the onset of schizophrenia and lead to language processing and motor coordination dysfunction in this patient population from China.


Subject(s)
GTPase-Activating Proteins , Schizophrenia , Humans , East Asian People , Genetic Variation , GTPase-Activating Proteins/genetics , Magnetic Resonance Imaging/methods , Neuroimaging , Polymorphism, Single Nucleotide , Schizophrenia/genetics
9.
J Pers Med ; 13(2)2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36836600

ABSTRACT

Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.

10.
Gene ; 851: 146762, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-35933050

ABSTRACT

The commercial value of Santalum album L. lies in its aromatic heartwood and essential oil. Sesquiterpenes are the main components of sandal essential oil, and these are synthesized through the plant's mevalonate (MVA) and methylerythritol phosphate (MEP) pathways. In this study, the first key rate-limiting enzyme, 1-deoxy-d-xylulose-5-phosphate synthase (SaDXS), was investigated to provide a theoretical molecular basis for the sandalwood MEP sesquiterpene biosynthetic pathway. The biofunctions of SaDXS were also analyzed. SaDXS promoters were successfully cloned from a seven-year-old S. album tree. SaDXS1A/1B promoter activity was verified by a ß-glucuronidase (GUS) assay and by analyzing cis-acting elements of the promoters, which carried light- and methyl jasmonate (MeJA)-responsive signals. In an experiment involving yellow S. album seedlings, exposure to light upregulated SaDXS1A/1B expression and increased chlorophyll and carotenoid contents when overexpressed in Arabidopsis thaliana. Analysis of the expression of SaDXS1A/1B and SaSSy, key genes of santalol biosynthesis, revealed SaDXS1A expression in all tissues whereas SaDXS1B was expressed in tissues that contained photosynthetic pigments, such as stems, leaves and flowers. Sandal seedlings exogenously treated with two hormones, MeJA and ethylene, revealed similar expression patterns for SaDXS1A/1B and SaSSy. Sandal seedlings were treated with an inhibitor of DXS, clomazone, but showed no significant changes in the contents of α-santalene, ß-santalene and α-santalol between treatment and control groups. These results suggest that SaDXS1A/1B play a role in the synthesis of sandalwood sesquiterpenes, providing carbon for downstream secondary metabolites. SaDXS1A/1B also play a role in the biosynthesis of chlorophyll, carotenoids, and primary metabolites.


Subject(s)
Oils, Volatile , Santalum , Sesquiterpenes , Santalum/genetics , Santalum/metabolism , Sesquiterpenes/metabolism , Oils, Volatile/metabolism , Chlorophyll , Cloning, Molecular
11.
Article in English | MEDLINE | ID: mdl-36002101

ABSTRACT

BACKGROUND: Inhibitory control, comprising cognitive inhibition and response inhibition, showed consistent deficits among several major psychiatric disorders. We aim to identify the trans-diagnostic convergence of neuroimaging abnormalities underlying inhibitory control across psychiatric disorders. METHODS: Inhibitory control tasks neuroimaging, including functional magnetic resonance imaging, single-photon emission computed tomography, and positron emission tomography articles published in PubMed and Web of Science before April 2020 comparing healthy controls with patients with several psychiatric disorders were searched. RESULTS: 146 experiments on 2653 patients with different disorders and 2764 control participants were included. Coordinates of case-control differences coded by diagnosis and inhibitory control components were analyzed using activation likelihood estimation. A robust trans-diagnostic pattern of aberrant brain activation in the bilateral cingulate gyri extending to medial frontal gyri, right insula, bilateral lentiform nuclei, right inferior frontal gyrus, right precuneus extending to inferior parietal lobule, and right supplementary motor area were detected. Frontostriatal pathways are the commonly disrupted neural circuits in the inhibitory control across psychiatric disorders. Furthermore, Patients showed aberrant activation in the dorsal frontal inhibitory system in cognitive inhibition, while in the frontostriatal system in response inhibition across disorders. CONCLUSION: Consistent with the Research Domain Criteria initiative, current findings show that psychiatric disorders may be productively formulated as a phenotype of trans-diagnostic neurocircuit disruption. Our results provide new insights for future research into mental disorders with inhibition-related dysfunctions.


Subject(s)
Mental Disorders , Neuroimaging , Brain/pathology , Brain Mapping , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography
12.
Life (Basel) ; 12(7)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35888105

ABSTRACT

Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) ß-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) transcription factors (TFs) were involved in participating in the biosynthesis of sesquiterpene synthase genes. Herein, bHLH TF genes with similar expression patterns and high expression levels were screened by co-expression analysis, and their full-length ORFs were obtained. These bHLH TFs were named SaMYC1, SaMYC3, SaMYC4, SaMYC5, SabHLH1, SabHLH2, SabHLH3, and SabHLH4. All eight TFs had highly conserved bHLH domains and SaMYC1, SaMYC3, SaMYC4, and SaMYC5, also had highly conserved MYC domains. It was indicated that the eight genes belonged to six subfamilies of the bHLH TF family. Among them, SaMYC1 was found in both the nucleus and the cytoplasm, while SaMYC4 was only localized in the cytoplasm and the remaining six TFs were localized in nucleus. In a yeast one-hybrid experiment, we constructed decoy vectors pAbAi-SSy1G-box, pAbAi-CYP2G-box, pAbAi-CYP3G-box, and pAbAi-CYP4G-box, which had been transformed into yeast. We also constructed pGADT7-SaMYC1 and pGADT7-SabHLH1 capture vectors and transformed them into bait strains. Our results showed that SaMYC1 could bind to the G-box of SaSSy, and the SaCYP736A167 promoter, which SaSSy proved has acted as a key enzyme in the synthesis of santalol sesquiterpenes and SaCYP450 catalyzed the ligation of santalol sesquiterpenes into terpene. We have also constructed pGreenII 62-SK-SaMYC1, pGreenII 0800-LUC-SaSSy and pGreenII 0800-LUC-SaCYP736A167 via dual-luciferase fusion expression vectors and transformed them into Nicotiana benthamiana using an Agrobacterium-mediated method. The results showed that SaMYC1 was successfully combined with SaSSy or SaCYP736A167 promoter and the LUC/REN value was 1.85- or 1.55-fold higher, respectively, than that of the control group. Therefore, we inferred that SaMYC1 could activate both SaSSy and SaCYP736A167 promoters.

13.
Transl Oncol ; 22: 101463, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691247

ABSTRACT

BACKGROUND: A-kinase interacting protein 1 (AKIP1) is recently implicated in the pathogenesis of several solid tumors, while its role in glioblastoma multiforme (GBM) is largely unknown. Therefore, the current study aimed to investigate the effect of AKIP1 on GBM cell malignant behaviors, stemness, and its underlying molecular mechanisms. METHODS: U-87 MG and A172 cells were transfected with control or AKIP1 overexpression plasmid; control or AKIP1 siRNA plasmid. Then cell proliferation, apoptosis, invasion, CD133+ cell proportion, and sphere formation assays were performed. Furthermore, RNA-Seq was performed in U-87 MG cells. Besides, AKIP1 expression was detected in 25 GBM and 25 low-grade glioma (LGG) tumor samples. RESULTS: AKIP1 was increased in several GBM cell lines compared to the control cell line. After transfections, it was found that AKIP1 overexpression increased cell invasion, CD133+ cell proportion, and sphere formation ability while less affecting cell proliferation or cell apoptosis in U-87 MG and A172 cells. Moreover, AKIP1 siRNA achieved the opposite effect in these cells, except that it inhibited cell proliferation but induced cell apoptosis to some extent. Subsequent RNA-Seq assay showed several critical carcinogenetic pathways, such as PI3K/AKT, Notch, EGFR tyrosine kinase inhibitor resistance, Ras, ErbB, mTOR pathways, etc. were potentially related to the function of AKIP1 in U-87 MG cells. Clinically, AKIP1 expression was higher in GBM tissues than in LGG tissues, which was also correlated with the poor prognosis of GBM to some degree. CONCLUSIONS: AKIP1 regulates the malignant behaviors and stemness of GBM via regulating multiple carcinogenetic pathways.

14.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742821

ABSTRACT

Glomerella leaf spot of apple, caused by Colletotrichumgloeosporioides, is a devastating disease that leads to severe defoliation and fruit spots. The Colletotrichum species secretes a series of effectors to manipulate the host's immune response, facilitating its colonization in plants. However, the mechanism by which the effector of C. gloeosporioides inhibits the defenses of the host remains unclear. In this study, we reported a novel effector Sntf2 of C. gloeosporioides. The transient expression of SNTF2 inhibits BAX-induced cell death in tobacco plants. Sntf2 suppresses plant defense responses by reducing callose deposition and H2O2 accumulation. SNTF2 is upregulated during infection, and its deletion reduces virulence to the plant. Sntf2 is localized to the chloroplasts and interacts with Mdycf39 (a chloroplast PSII assembly factor) in apple leaves. The Mdycf39 overexpression line increases susceptibility to C. gloeosporioides, whereas the Mdycf39 transgenic silent line does not grow normally with pale white leaves, indicating that Sntf2 disturbs plant defense responses and growth by targeting Mdycf39.


Subject(s)
Colletotrichum , Malus , Chloroplasts , Hydrogen Peroxide/metabolism , Malus/genetics , Malus/metabolism , Plant Diseases/genetics
15.
Genomics ; 114(4): 110420, 2022 07.
Article in English | MEDLINE | ID: mdl-35760231

ABSTRACT

microRNA (miRNA) is a group of small non-coding RNA that plays important role in post-transcription of gene expression. With the studies about miRNA increase in sugarcane, the researchers lack an exhaustive resource to achieve the data. To fill this gap, we developed MicroSugar, a database that supported mRNA and miRNA annotation for sugarcane (http://suc.gene-db.com). MicroSugar is an integrated resource developed for 194,528 genes including 80,746 unigenes from long reads of Pacbio platform and 468 miRNAs from 72 samples. Internode elongation (jointing) is the key biological characteristic for the growth of sugarcane tillers into sugarcane stems. The present study combined the sequencing data from the different stages in internode elongation of stem and tiller. In total, the 14,300 3' untranslated region (UTR) sequences were extracted from the gene sequences and 3019 mRNAs as target of 327 miRNA were identified by miRanda algorithm and Spearman's Rho of expression levels. To determine the gene functions regulated by these miRNAs, the gene ontology enrichment analysis was performed and it confirmed that the over-represented Gene Ontology (GO) terms were associated with organism formation indicating the growth controlling function by miRNAs in sugarcane. Moreover, MicroSugar is a comprehensive and integrated database with a user-friendly responsive template. By browsing, searching and downloading of the nucleotide sequences, expression and miRNA targets, the user can retrieve information promptly. The database provides a valuable resource to facilitate the understanding of miRNA in sugarcane development and growth which will contribute to the study of sugarcane and other plants.


Subject(s)
MicroRNAs , Saccharum , Gene Expression Profiling , Gene Ontology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharum/genetics , Saccharum/metabolism
16.
BMC Plant Biol ; 22(1): 222, 2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35484490

ABSTRACT

BACKGROUND: Ratoon sugarcane is susceptible to chlorosis, characterized by chlorophyll loss, poor growth, and a multitude of nutritional deficiency mainly occurring at young stage. Chlorosis would significantly reduce the cane production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcriptome and metabolome of chlorotic and non-chlorotic sugarcane leaves of the same age from the same field to gain molecular insights into this phenomenon. RESULTS: The agronomic traits, such as plant height and the number of leaf, stalk node, and tillers declined in chlorotic sugarcane. Chlorotic leaves had substantially lower chlorophyll content than green leaves. A total of 11,776 differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways were also enriched with 32 genes downregulated and four genes up-regulated. Among the 81 enriched GO biological processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. Approximately 400 metabolites were identified in metabolome analysis. The thirteen differentially expressed metabolites (DEMs) were all found down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and DEMs, indicating a potentially vital role for phenylpropanoids in chlorosis. CONCLUSIONS: Chlorophyll production, metal ion metabolism, photosynthesis, and some metabolites in the phenylpropanoid biosynthesis pathway were considerably altered in chlorotic ratoon sugarcane leaves. Our finding revealed the relation between chlorosis and these pathways, which will help expand our mechanistic understanding of ratoon sugarcane chlorosis.


Subject(s)
Anemia, Hypochromic , Saccharum , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Metabolome , Photosynthesis/genetics , Saccharum/genetics , Saccharum/metabolism , Transcriptome
17.
BMC Plant Biol ; 22(1): 173, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35382733

ABSTRACT

BACKGROUND: Siraitia grosvenorii (Swingle) C. Jeffrey, also known as Luohanguo or monk fruit, is a famous traditional Chinese medicine ingredient with important medicinal value and broad development prospects. Diploid S. grosvenorii has too many seeds, which will increase the utilization cost of active ingredients. Thus, studying the molecular mechanism of seed abortion in triploid S. grosvenorii, identifying the abortion-related genes, and regulating their expression will be a new direction to obtain seedless S. grosvenorii. Herein, we examined the submicroscopic structure of triploid S. grosvenorii seeds during abortion. RESULTS: Upon measuring the endogenous hormone content, we found that abscisic acid (ABA) and trans-zeatin (ZR) levels were significantly downregulated after days 15 and 20 of flowering. RNA sequencing of triploid seeds at different developmental stages was performed to identify key genes regulating abortion in triploid S. grosvenorii seeds. Multiple genes with differential expression between adjacent stages were identified; seven genes were differentially expressed across all stages. Weight gene co-expression network analysis revealed that the enhancement of monoterpene and terpene metabolic processes might lead to seed abortion by reducing the substrate flow to ABA and ZR. CONCLUSIONS: These findings provide insights into the gene-regulatory network of seed abortion in triploid S. grosvenorii from different perspectives, thereby facilitating the innovation of the breeding technology of S. grosvenorii.


Subject(s)
Cucurbitaceae , Transcriptome , Cucurbitaceae/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Plant Breeding , Seeds/genetics , Triploidy
18.
Biomed Pharmacother ; 149: 112787, 2022 May.
Article in English | MEDLINE | ID: mdl-35279010

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an acute respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and it has become a public health concern worldwide. In addition to respiratory symptoms, some COVID­19 patients also show various gastrointestinal symptoms and even consider gastrointestinal symptoms to be the first manifestation. A large amount of evidence has shown that SARS-CoV-2 infection could disrupt the gut microbiota balance, and disorders of the gut microbiota could aggravate the condition of COVID-19 patients. Therefore, maintaining the gut microbiota balance is expected to become a potential new therapeutic target for treating COVID-19. Traditional Chinese medicine (TCM) has significant effects in all stages of the prevention and treatment of COVID-19. It can adjust the gut microbiota and is an ideal intestinal microecological regulator. This review summarizes the advantages and clinical efficacy of TCM in the treatment of COVID-19 and expounds on the relationship between TCM and the gut microbiota, the relationship between COVID-19 and the gut microbiota, the mechanism of gut microbiota disorders induced by SARS-CoV-2, the relationship between cytokine storms and the gut microbiota, and the role and mechanism of TCM in preventing and treating COVID-19 by regulating the gut microbiota to provide new research ideas for TCM in the prevention and treatment of COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Cytokine Release Syndrome , Gastrointestinal Microbiome/physiology , Humans , Medicine, Chinese Traditional , SARS-CoV-2
19.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 149-157, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35300778

ABSTRACT

N-methyl-D-aspartate receptor (NMDAR),an important ionic glutamate receptor and a ligand and voltage-gated ion channel characterized by complex composition and functions and wide distribution,plays a key role in the pathological and physiological process of diseases or stress states.NMDAR can mediate apoptosis through different pathways such as mitochondrial and endoplasmic reticulum damage,production of reactive oxygen species and peroxynitrite,and activation of mitogen-activated protein kinase and calpain.This paper reviews the structure,distribution,and biological characteristics of NMDAR and the mechanisms of NMDAR-mediated apoptosis.


Subject(s)
Apoptosis , Receptors, N-Methyl-D-Aspartate , Humans , Mitogen-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction
20.
Dis Markers ; 2022: 3229888, 2022.
Article in English | MEDLINE | ID: mdl-35222742

ABSTRACT

Pulmonary hypertension (PH) is a chronic and progressive disease caused by obstructions and functional changes of small pulmonary arteries. Current treatment options of PH are costly with patients needing long-term taking medicine. The traditional Chinese medicine (TCM) compound "Shufeiya Recipe" was used to intervene in monocrotaline- (MCT-) induced pulmonary hypertension in rats. The rats were randomly divided into the control group, model group, positive drug (Sildenafil) group, and Shufeiya Recipe low-, moderate-, and high-dose groups. The improvement effect of the Shufeiya Recipe on the mean pulmonary artery pressure (mPAP) was assessed in PH rats, and pathological staining was used to observe the pathological changes of lung tissue. The impact of the Shufeiya Recipe on oxidative stress damage in rats with pulmonary hypertension and the regulation of SIRT3/FOXO3a and its downstream signaling pathways were determined. The results showed that Shufeiya Recipe could significantly downregulate mPAP and improve lung histopathological changes; downregulate serum levels of reactive oxygen species (ROS); upregulate the concentrations of COX-1 and COX-2 and the activity of Mn-SOD; inhibit oxidative response damage; promote the protein expression of SIRT3, FOXO3a, p-PI3K, p-AKT, and p-eNOS; increase the level of expression of NO, sGC, cGMP, and PKG; and downregulate the level of protein expression of Ras, p-MEK1/2, p-ERK1/2 and c-fos. These results indicate that Shufeiya Recipe can improve MCT-induced pulmonary hypertension in rats by regulating SIRT3/FOXO3a and its downstream PI3K/AKT/eNOS and Ras/ERK signaling pathways.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Forkhead Box Protein O3/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Sirtuin 3/metabolism , Animals , Blood Pressure/drug effects , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/pathology , Male , Membrane Proteins/metabolism , Monocrotaline , Nitric Oxide Synthase/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/blood , Signal Transduction , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...