Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 274: 104822, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36646274

ABSTRACT

Fragile X mental retardation protein (FMRP) deficit resulted from mutations in its encoded fragile X mental retardation 1 (Fmr1) gene is a common inherited cause of Fragile X syndrome (FXS) characterized by intellectual disability and autism spectrum disorder (ASD). The FMRP absence-induced altered gene expression in prefrontal cortex (PFC) are associated with autistic behaviors. However, there lacks a large-scale protein profiling in the PFC upon loss of FMRP. This study used a TMT-labeled proteomic analysis to identify a protein profile of the PFC in the Fmr1 knockout mouse. A total of 5886 proteins were identified in the PFC with 100 differentially abundant proteins (DAPs) in response to FMRP deficiency. Bioinformatical analyses showed that these DAPs were mostly enriched in immune system, extracellular part and complement and coagulation cascades. The complement and coagulation cascades include 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG), which are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis linked to activation of immune and inflammatory responses. Thus, our data provide an altered protein profile upon loss of FMRP in the PFC, and suggest that the enhancement of complement and coagulation cascades might contribute to etiological and pathogenic roles of ASD in FXS. SIGNIFICANCE: The etiology of autism spectrum disorder (ASD), a group of neurobiological disorders characterized by deficits in social interaction barriers and other abnormal behaviors, is still elusive. Autistic-like phenotypes are present in both Fragile X syndrome (FXS) patients and FMRP-deficiency FXS models. Given that prefrontal cortex is a critical brain area for social interaction, the FMRP absence induced-changes of a subset of proteins might contribute to ASD in FXS. Using a comprehensive proteomic analysis, this study provides a prefrontal protein profile of the FMRP-absent mouse with a total of 100 differentially abundant proteins (DAPs). Bioinformatic analyses suggest that these DAPs are mainly involved in the regulations of immune system and complement and coagulation cascades. We also show that 6 upregulated proteins (SERPING1, C1QA, C3, FGA, FGB and FGG) in the complement and coagulation cascades are associated with fibrin degradation, cell lysis, degranulation chemotaxis and phagocytosis regarding dysregulation of immune and inflammatory responses in the prefrontal cortex. Therefore, this study suggests that these FMRP-deficient DAPs in the prefrontal cortex might contribute to the etiology and pathogenesis of ASD in FXS.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Animals , Mice , Complement C1 Inhibitor Protein/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Mice, Knockout , Prefrontal Cortex/metabolism , Proteome/metabolism , Proteomics , Blood Coagulation
2.
Neuroendocrinology ; 113(1): 80-91, 2023.
Article in English | MEDLINE | ID: mdl-36030776

ABSTRACT

INTRODUCTION: Fat mass and obesity-associated (FTO) gene is strongly associated with obesity which brings a major health threat. Altered expression of its encoded protein FTO in the hypothalamus has been identified to contribute to central control of appetite and body weight. However, its molecular mechanisms remain elusive. METHODS: Mouse hypothalamic POMC cell line N43/5 was treated with FTO inhibitor rhein, FTO shRNA, or extracellular signal-regulated kinase 1/2 (ERK1/2) inhibitor U0126 to inhibit FTO or ERK1/2. Rhein and U0126 were injected into lateral ventricle of the mice by intracerebroventricular cannulation. Western blotting and immunofluorescent assays were performed to monitor protein level. RESULTS: This study identified that inhibition of FTO in N43/5 cells led to phosphorylation of signal transducer and activator of transcription 3 (STAT3) at S727 site and induced p-STAT3-S727 nuclear translocation. We further showed that FTO inhibition promoted phosphorylation of ERK1/2; specific inhibition of ERK1/2 signaling by U0126 could abolish the effect of FTO inhibition on STAT3-S727 phosphorylation and nuclear translocation. Furthermore, we found that inhibition of hypothalamic FTO promoted STAT3-S727 phosphorylation in the hypothalamic arcuate nucleus, and the mice showed reductions in food intake and body weight. In addition, inhibition of hypothalamic ERK1/2 could abolish the effects of FTO inhibition on STAT3-S727 phosphorylation, reductions of food intake and body weight. CONCLUSION: Our in vitro and in vivo data suggest that the inhibition of hypothalamic FTO could activate STAT3 through ERK1/2, which is potentially associated with reductions in food intake and body weight.


Subject(s)
MAP Kinase Signaling System , STAT3 Transcription Factor , Mice , Animals , STAT3 Transcription Factor/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Hypothalamus/metabolism , Body Weight , Obesity/metabolism , Eating , Phosphorylation , Leptin/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
3.
J Proteomics ; 269: 104720, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36089189

ABSTRACT

Loss of fragile X retardation protein (FMRP) leads to fragile X syndrome (FXS), a common cause of inherited intellectual disability. Protein lysine acetylation (K-ac), a reversible post-translational modification of proteins, is associated with the regulation of brain development and neuropathies. However, a comprehensive hippocampal K-ac protein profile in response to FMRP deficiency has not been reported until now. Using LC-MS/MS to analyze the enriched K-ac peptides, this study identified 1629 K-ac hits across 717 proteins in the mouse hippocampus, and these proteins were enriched in several metabolic processes. Of them, 51 K-ac hits across 45 proteins were significantly changed upon loss of FMRP. These altered K-ac proteins were enriched in energy metabolic processes including carboxylic acid metabolism process, aerobic respiration and citrate cycle, linking with several neurological disorders such as lactic acidosis, Lewy body disease, Leigh disease and encephalopathies. In the mouse hippocampus and the hippocampal HT-22 cells, FMRP deficiency could induce altered K-ac modification of several key enzymes, decrease in ATP and increase in lactate. Thus, this study identified a global hippocampal lysine acetylome and an altered K-ac protein profile upon loss of FMRP linked to abnormal energy metabolism, implicating in the pathogenesis of FXS. SIGNIFICANCE: Fragile X syndrome (FXS) is a common inherited neurodevelopment disorder characterized by intellectual disability and an increased risk for autism spectrum disorder. FXS is resulted from silencing of the FMR1 gene, which induces loss of its encoding protein FMRP. Molecular and metabolic changes of Fmr1-null animal models of FXS have been identified to potentially contribute to the pathogenesis of FXS. Here, we used a TMT-labeled quantitative proteomic analysis of the peptides enriched by anti-K-ac antibodies and identified a global K-ac protein profile in the mouse hippocampus with a total of 1629 K-ac peptides on 717 proteins. Of them, 51 K-ac peptides regarding 45 proteins altered in response to loss of FMRP, which were enriched in energy metabolic processes and were implicated in several neurological disorders. Thus this study for the first time provides a global hippocampal lysine acetylome upon FMRP deficiency linked to abnormal metabolic pathways, which may contribute to pathogenic mechanism of FXS.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Intellectual Disability , Adenosine Triphosphate/metabolism , Animals , Carboxylic Acids , Chromatography, Liquid , Citrates , Disease Models, Animal , Energy Metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Fragile X Syndrome/pathology , Hippocampus/metabolism , Lactates , Lysine/metabolism , Mice , Mice, Knockout , Proteomics , Tandem Mass Spectrometry
4.
Brain Res Bull ; 170: 81-89, 2021 05.
Article in English | MEDLINE | ID: mdl-33581311

ABSTRACT

Aberrant expression or dysfunction of a number of genes in the brain contributes to epilepsy, a common neurological disorder characterized by recurrent seizures. Local overexpression of arachidonate lipoxygenase 3 (ALOXE3), a key enzyme for arachidonic acid (AA) metabolic pathway, alleviates seizure severities. However, the relationship between the ALOXE3 gene mutation and epilepsy has not been reported until now. Here we firstly characterized the promoter of human ALOXE3 gene and found that the ALOXE3 promoter could drive luciferase gene expression in the human HEK-293 and SH-SY5Y cells. We then screened the ALOXE3 promoter region and all coding exons from those patients with Dravet syndrome and identified 5 variants c.-163T > C, c.-50C > G, c.-37G > A, c. + 228G > A and c. + 290G > T in the promoter region and one missense variant c.1939A > G (p.I647 V) in the exon. Of these variants in the promoter region, only -50C > G was a novel variant located on the transcriptional factor NFII-I binding element. Luciferase reporter gene analyses indicated that the c.-50C > G could decrease gene expression by preventing the TFII-I's binding. In addition, the variant p.I647 V was conserved among all analyzed species and located within the ALOXE3 functional domain for catalyzing its substrate. In cultured cell lines, overexpression of ALOXE3 significantly decreased the cellular AA levels and overexpression of ALOXE3-I647 V could restore the AA levels, suggesting that the p.I647 V mutant led to a decrease in enzyme activity. Taken together, the present study proposes that the identified ALOXE3 variants potentially contribute to the AA-pathway-mediated epileptogenesis, which should provide a novel avenue for clinical diagnosis of epilepsy.


Subject(s)
Brain/metabolism , Epilepsies, Myoclonic/genetics , Lipoxygenase/genetics , Mutation , Alleles , Epilepsies, Myoclonic/metabolism , HEK293 Cells , Humans , Lipoxygenase/metabolism , Phenotype , Promoter Regions, Genetic
5.
Life Sci ; 272: 119243, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33607157

ABSTRACT

High fat consumption leads to reactive oxygen species (ROS) which is associated with age-progressive neurological disorders. Cu/Zn superoxide dismutase (SOD1) is a critical enzyme against ROS. However, the relationship between SOD1 and the high-fat-induced ROS and neurodegeneration is poorly known. Here we showed that, upon treatment with a saturated fatty acid palmitic acid (PA), the SOD1 activity was decreased in mouse neuronal HT-22 cell line accompanied by elevation of ROS, but not in mouse microglial BV-2 cell line. We further showed that PA decreased the levels of copper chaperone for SOD1 (CCS) in HT-22 cells, which promoted the nuclear import of SOD1 and decreased its activity. We demonstrated that the reduction of CCS is involved in the PA-induced decrease of SOD1 activity and elevation of ROS. In addition, compared with the adult mice fed with a standard diet, the high-fat-diet adult mice presented an increase of plasma free fatty acids, reduction of hippocampal SOD1 activity and CCS, mitochondrial degeneration and long-term memory decline. Taken together, our findings suggest that the high-fat-induced lower CCS level is essential for SOD1 suppression which may be associated with neurodegeneration and cognitive decline.


Subject(s)
Diet, High-Fat/adverse effects , Molecular Chaperones/metabolism , Superoxide Dismutase-1/metabolism , Animals , Cell Line , China , Copper/metabolism , Male , Memory , Memory Disorders , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Neurodegenerative Diseases/physiopathology , Palmitic Acid/metabolism , Palmitic Acid/pharmacology , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/physiology
6.
Cell Mol Neurobiol ; 41(6): 1257-1269, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32500354

ABSTRACT

Valproate (VPA), a widely-used antiepileptic drug, is a selective inhibitor of histone deacetylase (HDAC) that play important roles in epigenetic regulation. The patient with different diseases receiving this drug tend to exhibit weight gain and abnormal metabolic phenotypes, but the underlying mechanisms remain largely unknown. Here we show that VPA increases the Fto mRNA and protein expression in mouse hypothalamic GT1-7 cells. Interestingly, VPA promotes histone H3/H4 acetylation and the FTO expression which could be reversed by C646, an inhibitor for histone acetyltransferase. Furthermore, VPA weakens the FTO's binding and enhances the binding of transcription factor TAF1 to the Fto promoter, and C646 leads to reverse effect of the VPA, suggesting an involvement of the dynamic of histone H3/H4 acetylation in the regulation of FTO expression. In addition, the mice exhibit an increase in the food intake and body weight at the beginning of 2-week treatment with VPA. Simultaneously, in the hypothalamus of the VPA-treated mice, the FTO expression is upregulated and the H3/H4 acetylation is increased; further the FTO's binding to the Fto promoter is decreased and the TAF1's binding to the promoter is enhanced, suggesting that VPA promotes the assembly of the basal transcriptional machinery of the Fto gene. Finally, the inhibitor C646 could restore the effects of VPA on FTO expression, H3/H4 acetylation, body weight, and food intake; and loss of FTO could reverse the VPA-induced increase of body weight and food intake. Taken together, this study suggests an involvement of VPA in the epigenetic upregulation of hypothalamic FTO expression that is potentially associated with the VPA-induced weight gain.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/biosynthesis , Epigenesis, Genetic/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Valproic Acid/pharmacology , Weight Gain/drug effects , Animals , Anticonvulsants/pharmacology , Dose-Response Relationship, Drug , Eating/drug effects , Eating/physiology , Epigenesis, Genetic/physiology , Gene Expression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Up-Regulation/drug effects , Up-Regulation/physiology , Weight Gain/physiology
7.
J Proteomics ; 214: 103633, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31911195

ABSTRACT

Nicotine, a major addictive component in tobacco, plays an important role in the changes of body weight upon smoking and its cessation. Here we showed that nicotine-treated mice exhibited weight loss and nicotine withdrawal led to weight gain. Using TMT-based proteomic analysis, we obtained the different hypothalamic protein profiles in response to nicotine and its withdrawal. A total of ~5000 proteins were identified from the hypothalamus with 50 altered proteins upon 28-day nicotine treatment and 28 altered proteins upon 15-day nicotine withdrawal. Of the altered proteins, CASP3, LCMT2, GRIN2D, CCNT2, FADS3 and MRPS18B were inversely changed in response to nicotine and withdrawal, coincidence with the change of body weight. Of them, CASP3, LCMT2, GRIN2D and CCNT2 were found to be associated with several GO terms and KEGG pathways linking with cell apoptosis, neurotransmission and metabolism. Further Western blot and RT-qPCR analyses confirmed that the levels of the 4 proteins CASP3, LCMT2, GRIN2D and CCNT2, instead of their mRNA transcripts, altered in response to nicotine and withdrawal. Thus this study provides nicotine- and withdrawal-induced hypothalamic protein profiles and suggests potential roles of these altered proteins in the change of body weight. SIGNIFICANCE: Cigarette smoking is one of important factors harming human health. Most smokers tend to have lower body weights and smoking cessation often lead to overweight or obesity, which is an important reason for smokers to insist on smoking. It is known that nicotine, a critical component in tobacco, is associated with the alteration in body weight by affecting hypothalamic function. Through TMT-based proteomic analysis, this study identified differential hypothalamic protein profiles in response to nicotine treatment and its withdrawal, and 4 nicotine- and withdrawal-induced contrary proteins CASP3, LCMT2, GRIN2D and CCNT2 are involved in several enriched GO terms and KEGG pathways, which are associated with cell apoptosis, neurotransmission and metabolism. Our study may provide novel targets for further investigation of the molecular mechanisms of nicotine- and withdrawal-induced alteration in body weight.


Subject(s)
Nicotine , Proteome , Animals , Body Weight , Hypothalamus , Mice , Nicotine/adverse effects , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...