Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Analyst ; 148(11): 2465-2471, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37158574

ABSTRACT

Sulfur dioxide (SO2) has been widely applied as an important additive in various foods and drugs due to its antioxidant, antiseptic and bleaching properties. SO2 in living organisms plays a key biological role as an antioxidant in a variety of life activities. However, abnormal levels of SO2 in both food and living organisms could cause harm and even serious illness, such as diseases related to the respiratory and cardiovascular systems and cancers. Therefore, it is of great practical significance to accurately determine the level of SO2 in food and organisms. In this work, we synthesized a novel near-infrared ratiometric fluorescent probe (NTO) using xanthene and benzopyran as the matrix for the detection of SO2. NTO demonstrates a rapid response (within 8 s), high selectivity, excellent sensitivity (LOD = 3.64 µM) and a long emission wavelength (800 nm), which could be applied to SO2 monitoring in a complex environment. NTO showed a high recovery (90%-110%) of SO2 in food samples such as beer and rock sugar. The results of HeLa cell experiments indicate that NTO has excellent fluorescence labeling ability for SO2 in endoexogenous-sulfide metabolism. In addition, we applied it to mice with acetaminophen (APAP)-induced acute liver injury and observed changes in SO2 during liver injury. Based on these results, we believe that this will provide a convenient visual tool for the detection of the SO2 content in food safety and biomedicine.


Subject(s)
Chemical and Drug Induced Liver Injury , Fluorescent Dyes , Humans , Mice , Animals , Fluorescent Dyes/toxicity , HeLa Cells , Antioxidants , Fluorescence
2.
J Am Chem Soc ; 145(5): 3229-3237, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36701205

ABSTRACT

Norepinephrine (NE) is synthesized in the locus coeruleus and widely projected throughout the brain and spinal cord. It regulates various actions and consciousness linked to a variety of neurological diseases. A "hunting-shooting" strategy was proposed in this work to improve the specificity and response rate of an NE fluorescent probe: 2-(cyclohex-2-en-1-ylidene)malononitrile derivatives were chosen as a fluorophore. To create a dual-site probe, an aldehyde group was added to the ortho of the ester group (or benzene sulfonate). Because of its excellent electrophilic activity, the aldehyde group could rapidly "hunt" the amino group and then form an intramolecular five-membered ring via the nucleophilic reaction with the ß-hydroxyl group. The -NH- in the five-membered ring "shoots" the adjacent ester group, releasing the fluorophore and allowing for rapid and specific NE detection. The NE release and reuptake ″emetic″-″swallow″ transient process is captured and visualized under the action of the primary NE receptor drug. Furthermore, by introducing halogen into the fluorophore to lengthen the absorption wavelength, improve lipid solubility, and adjust the pKa appropriately, the probe successfully penetrated the blood-brain barrier (BBB). In situ synchronous probe imaging was used to detect the NE level in the brains of epileptic and normal mice, and abnormal expression of NE in the brain was discovered during epilepsy. Brain anatomy was used to examine the distribution and level changes of NE in various brain regions before and after epilepsy. This research provides useful tools and a theoretical foundation for diagnosing and treating central nervous system diseases early.


Subject(s)
Epilepsy , Norepinephrine , Mice , Animals , Norepinephrine/metabolism , Fluorescent Dyes/metabolism , Brain/metabolism , Epilepsy/metabolism , Signal Transduction
3.
J Am Chem Soc ; 143(1): 318-325, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33356184

ABSTRACT

Biosynthesis is a necessary process to maintain life. In recent years, research has fully shown that three kinds of biothiols (Cys, Hcy, GSH) mainly play the role in oxidative stress and maintaining cell homeostasis in cells, and that abnormal concentrations will lead to the occurrence of cardiovascular diseases, cancers, etc. Various fluorescent probes have shown unprecedented advantages in detecting their concentrations and studying their biological functions. As a matter of fact, these three kinds of biothiols are generated in the process of biosynthesis in vivo. It is of great significance to understand their biosynthetic pathways and elucidate their synthetic relationships. In this work, to α,ß-unsaturated ketones conjugated ethylenediamine coumarin and pyrandione was introduced boron fluoride and, through its strong electron deficiency effect, afforded a molecule having near-infrared emission and regulated the rigidity of molecules. At the same time, the conjugated double bond is used to respond to molecular rigidity. The rapid response of the probe to biothiols and the slow dissociation aggregation of the probe itself through the response environment could monitor the absence of biothiols in cells. In addition, based on the difference in sensitivity of response of Cys and GSH to the probe, this work studied the interaction between biosynthetic pathways of Cys and GSH in cells through enzyme inhibition for the first time. The relationship of restriction and regulation of biosynthesis in vivo was revealed.


Subject(s)
Cysteine/biosynthesis , Glutathione/biosynthesis , Boron Compounds/chemistry , Coumarins/chemistry , Fluorescent Dyes/chemistry , HCT116 Cells , Humans , Microscopy, Fluorescence
4.
Analyst ; 145(22): 7380-7387, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-32930683

ABSTRACT

The excellent water solubility of hydrazine (N2H4) allows it to easily invade the human body through the skin and respiratory tract, thereby damaging human organs and the central nervous system. To realize the monitoring of N2H4 effectively, first, coumarin was used to construct an inner alicyclic ring as the reaction site, extending the conjugation and strengthening the rigidity of the probe Co-Hy to improve its luminescence performance and enhance its ability to resist acids and alkalis. Second, we introduced a carboxyl group at the ortho position of the inner alicyclic ring to improve the water solubility of Co-Hy, and its strong electron pulling effect increased the activity of the reaction site. Spectroscopy experiments showed that Co-Hy featured excellent water solubility, high pH resistance (pH 4-11), excellent selectivity, fast analysis speed (within 5 minutes), and a low detection limit toward N2H4 (69 nM, 2.2 ppb). In addition, test-strip, spray, and cell-imaging experiments confirmed the outstanding application potential of Co-Hy for convenient N2H4 analysis in a variety of environments.


Subject(s)
Fluorescent Dyes , Water , Humans , Hydrazines , Hydrogen-Ion Concentration , Soil , Spectrometry, Fluorescence
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 229: 117905, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31865108

ABSTRACT

Water pollution is the main cause of death of aquatic organisms such as fish et al. Content of thiophenols in water samples is an important indicator for assessing the degree of water pollution. The development of fluorescent probes with high selectivity and high sensitivity to detect thiophenols in water samples is extremely important in both environmental and life sciences. Although several fluorescent probes for thiophenols detection have been reported in recent years, most of them required the assistance of organic solvents to remedy the restriction caused by the poor water solubility of the probe, which did not fully reflect the actual situation of thiophenols in actual water samples. To fully overcome this shortage, we modified the 1,8-naphthylimide moiety with carboxyl to obtain a water-soluble fluorescent probe which could react with thiophenols specifically through nucleophilic aromatic substitution reaction (SNAr) reaction with turn-on fluorescent responses. The corresponding detection limit was 71 nM. Supported by the spectroscopic changes, test strips based on the probe could detect thiophenols quantificationally and conveniently. At the same time, the probe could detect thiophenols in water sample with quantitative recovery. Besides, cell imaging experiments demonstrated the possibility of the probe to detect thiophenols in living cells.


Subject(s)
Fluorescent Dyes , Phenols/analysis , Sulfhydryl Compounds/analysis , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HCT116 Cells , Humans , Solubility , Spectrometry, Fluorescence , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL