Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Ital J Pediatr ; 49(1): 148, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37946309

ABSTRACT

BACKGROUND: The prevalence of food allergies (FA) has been steadily increasing over 2 to 3 decades, showing diverse symptoms and rising severity. These long-term outcomes affect children's growth and development, possibly linking to inflammatory bowel disease. However, the cause remains unclear. Previous studies reveal that early infancy significantly impacts FA development through gut microbiota. Yet, a consistent view on dysbiosis characteristics and its connection to future allergies is lacking. We explored how early-life gut microbiota composition relates to long-term clinical signs in children with FA through longitudinal research. METHODS: We employed high-throughput 16S rDNA gene sequencing to assess gut microbiota composition in early-life FA children in southern Zhejiang. Follow-up of clinical manifestations over 2 years allowed us to analyze the impact of early-life gut microbiota dysbiosis on later outcomes. RESULTS: While the diversity of gut microbiota in FA children remained stable, there were shifts in microbiota abundance. Abundant Akkermansia, Parabacteroides, Blautia, and Escherichia-Shigella increased, while Bifidobacterium and Clostridium decreased. After 2 years, two of ten FA children still showed symptoms. These two cases exhibited increased Escherichia-Shigella and reduced Bifidobacterium during early childhood. The other eight cases experienced symptom remission. CONCLUSIONS: Our study suggests that FA and its prognosis might not correlate with early-life gut microbiota diversity. Further experiments are needed due to the small sample size, to confirm these findings.


Subject(s)
Food Hypersensitivity , Gastrointestinal Microbiome , Microbiota , Humans , Child , Child, Preschool , Dysbiosis/microbiology , Food Hypersensitivity/diagnosis , Prognosis , Bifidobacterium
2.
Front Mol Neurosci ; 16: 1137123, 2023.
Article in English | MEDLINE | ID: mdl-37396785

ABSTRACT

Introduction: Down syndrome (DS) is the most common genetic condition that causes intellectual disability in humans. The molecular mechanisms behind the DS phenotype remain unclear. Therefore, in this study, we present new findings on its molecular mechanisms through single-cell RNA sequencing. Methods: Induced pluripotent stem cells (iPSCs) from the patients with DS and the normal control (NC) patients were differentiated into iPSCs-derived neural stem cells (NSCs). Single-cell RNA sequencing was performed to achieve a comprehensive single-cell level differentiation roadmap for DS-iPSCs. Biological experiments were also performed to validate the findings. Results and Discussion: The results demonstrated that iPSCs can differentiate into NSCs in both DS and NC samples. Furthermore, 19,422 cells were obtained from iPSC samples (8,500 cells for DS and 10,922 cells for the NC) and 16,506 cells from NSC samples (7,182 cells for DS and 9,324 cells for the NC), which had differentiated from the iPSCs. A cluster of DS-iPSCs, named DS-iPSCs-not differentiated (DSi-PSCs-ND), which had abnormal expression patterns compared with NC-iPSCs, were demonstrated to be unable to differentiate into DS-NSCs. Further analysis of the differentially expressed genes revealed that inhibitor of differentiation family (ID family) members, which exhibited abnormal expression patterns throughout the differentiation process from DS-iPSCs to DS-NSCs, may potentially have contributed to the neural differentiation of DS-iPSCs. Moreover, abnormal differentiation fate was observed in DS-NSCs, which resulted in the increased differentiation of glial cells, such as astrocytes, but decreased differentiation into neuronal cells. Furthermore, functional analysis demonstrated that DS-NSCs and DS-NPCs had disorders in axon and visual system development. The present study provided a new insight into the pathogenesis of DS.

3.
Mol Genet Genomic Med ; 11(9): e2202, 2023 09.
Article in English | MEDLINE | ID: mdl-37288707

ABSTRACT

BACKGROUND: Lysine acetyltransferase 6B (KAT6B) encodes a highly conserved histone acetyltransferase that regulates the expression of multiple genes and is essential for human growth and development. METHODS: We identified a novel frameshift variant c.3185del (p.leu1062Argfs*52) in a 5-year-old Chinese boy and further analyzed KAT6B expression and its interacting complexes and downstream products using real-time quantitative polymerase chain reaction (qPCR). Furthermore, we assessed its three-dimensional protein structure and compared the variant with other reported KAT6B variants. RESULTS: The deletion changed the leucine at position 1062 into an arginine, resulting in translation termination after base 3340, which may have affected protein stability and protein-protein interactions. KAT6B mRNA expression levels in this case were substantially different from those of the parents and controls in the same age range. There were also significant differences in mRNA expression levels among affected children's parents. RUNX2 and NR5A1, downstream products of the gene, affect the corresponding clinical symptoms. The mRNA expression levels of the two in children were lower than those of their parents and controls in the same age range. CONCLUSION: This deletion in KAT6B may affect protein function and cause corresponding clinical symptoms through interactions with key complexes and downstream products.


Subject(s)
Intellectual Disability , Male , Child , Humans , Child, Preschool , Intellectual Disability/genetics , Mutation , East Asian People , Phenotype , RNA, Messenger/genetics , Histone Acetyltransferases/genetics
4.
Clin Genet ; 103(6): 663-671, 2023 06.
Article in English | MEDLINE | ID: mdl-36999564

ABSTRACT

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a specific LGMD caused by a gene mutation encoding the calcium-dependent neutral cysteine protease calpain-3 (CAPN3). In our study, the compound heterozygosity with two missense variants c.635 T > C (p.Leu212Pro) and c.2120A > G (p.Asp707Gly) was identified in patients with LGMDR1. However, the pathogenicity of c.635 T > C has not been investigated. To evaluate the effects of this novel likely pathogenic variant to the motor system, the mouse model with c.635 T > C variant was prepared by CRISPR/Cas9 gene editing technique. The pathological results revealed that a limited number of inflammatory cells infiltrated the endomyocytes of certain c.635 T > C homozygous mice at 10 months of age. Compared with wild-type mice, motor function was not significantly impaired in Capn3 c. 635 T > C homozygous mice. Western blot and immunofluorescence assays further indicated that the expression levels of the Capn3 protein in muscle tissues of homozygous mice were similar to those of wild-type mice. However, the arrangement and ultrastructural alterations of the mitochondria in the muscular tissues of homozygous mice were confirmed by electron microscopy. Subsequently, muscle regeneration of LGMDR1 was simulated using cardiotoxin (CTX) to induce muscle necrosis and regeneration to trigger the injury modification process. The repair of the homozygous mice was significantly worse than that of the control mice at day 15 and day 21 following treatment, the c.635 T > C variant of Capn3 exhibited a significant effect on muscle regeneration of homozygous mice and induced mitochondrial damage. RNA-sequencing results demonstrated that the expression levels of the mitochondrial-related functional genes were significantly downregulated in the mutant mice. Taken together, the results of the present study strongly suggested that the LGMDR1 mouse model with a novel c.635 T > C variant in the Capn3 gene was significantly dysfunctional in muscle injury repair via impairment of the mitochondrial function.


Subject(s)
Muscular Dystrophies, Limb-Girdle , Mutation, Missense , Humans , Animals , Mice , Muscle Proteins/genetics , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Calpain/genetics , Disease Models, Animal
5.
Mol Cells ; 46(4): 219-230, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36625318

ABSTRACT

Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , Humans , Proto-Oncogene Proteins c-akt/metabolism , Induced Pluripotent Stem Cells/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Phosphatidylinositol 3-Kinases/metabolism , Down Syndrome/metabolism , Cell Differentiation/genetics , Up-Regulation , Mitochondria/metabolism
6.
Front Genet ; 13: 1004307, 2022.
Article in English | MEDLINE | ID: mdl-36568392

ABSTRACT

Dopa-responsive dystonia (DRD), also known as Segawa syndrome, is a rare neurotransmitter disease. The decrease in dopamine caused by tyrosine hydroxylase (TH) gene mutation may lead to dystonia, tremor and severe encephalopathy in children. Although the disease caused by recessive genetic mutation of the tyrosine hydroxylase (TH) gene is rare, we found that the clinical manifestations of seven children with tyrosine hydroxylase gene mutations are similar to dopa-responsive dystonia. To explore the clinical manifestations and possible pathogenesis of the disease, we analyzed the clinical data of seven patients. Next-generation sequencing showed that the TH gene mutation in three children was a reported homozygous mutation (c.698G>A). At the same time, two new mutations of the TH gene were found in other children: c.316_317insCGT, and c.832G>A (p.Ala278Thr). We collected venous blood from four patients with Segawa syndrome and their parents for real-time quantitative polymerase chain reaction analysis of TH gene expression. We predicted the structure and function of proteins on the missense mutation iterative thread assembly refinement (I-TASSER) server and studied the conservation of protein mutation sites. Combined with molecular biology experiments and related literature analysis, the qPCR results of two patients showed that the expression of the TH gene was lower than that in 10 normal controls, and the expression of the TH gene of one mother was lower than the average expression level. We speculated that mutation in the TH gene may clinically manifest by affecting the production of dopamine and catecholamine downstream, which enriches the gene pool of Segawa syndrome. At the same time, the application of levodopa is helpful to the study, diagnosis and treatment of Segawa syndrome.

7.
Stem Cell Res ; 62: 102798, 2022 07.
Article in English | MEDLINE | ID: mdl-35537242

ABSTRACT

Epilepsy of infancy with migrating focal seizures (EIMFS) is a kind of epileptic encephalopathy with high genetic heterogeneity. The most common pathogenic gene for EIMFS is potassium sodium-activated channel subfamily T member 1 (KCNT1). Using Sendai virus-mediated reprogramming, we established an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells (PBMCs) of a five-month-old Chinese girl with heterozygous missense mutation (c.2800 G>A) in the KCNT1 gene. The iPSCs were stable during amplification, expressed pluripotent genes, maintained a normal karyotype, and showed characteristics of the three germs layers in an in vitro differentiation assay.


Subject(s)
Epilepsy , Induced Pluripotent Stem Cells , Cell Differentiation , China , Electroencephalography , Epilepsy/genetics , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Infant , Leukocytes, Mononuclear/metabolism , Mutation , Mutation, Missense , Nerve Tissue Proteins/metabolism , Potassium Channels, Sodium-Activated , Seizures
8.
Front Cell Dev Biol ; 10: 853127, 2022.
Article in English | MEDLINE | ID: mdl-35386198

ABSTRACT

Background: The chromodomain helicase DNA-binding protein 2 (CHD2) gene, is an ATPase and part of the CHD family of chromatin remodelers. Mutations in the CHD2 gene are inherited in an autosomal-dominant manner and can lead to intellectual disability, epilepsy, and autism. We investigated the clinical characteristics of CHD2-related conditions and their possible pathogenesis. Methods: We collected and analysed the clinical data of patients that were identified as having CHD2 mutations. Genetic testing was performed using targeted sequencing or whole-exome sequencing. We analysed the expression of CHD2 and repressor element 1-silencing transcription factor (REST) in blood samples using quantitative PCR and the conservation of the mutations. The CHD2 mutations we identified were compared with the known mutations reported in the CHD2-related literature. Results: Eight patients with CHD2 gene mutations were analysed. Six mutations were identified; four were unreported previously (c.670C>T; c.4012A>C; c.2416dup; c.1727-1728insAT), and two were known mutations: c.5035C>T (two cases) and c.4173dup (two cases). Among these mutations, seven were de novo mutations, and one could not be determined because the parents refused genetic testing. The clinical manifestations included mild or severe intellectual disability, epilepsy, and behavioural abnormalities. Quantitative PCR showed that the CHD2 gene expression levels among the patients, parents, and the controls were not significantly different. The levels of REST gene expression in the patients were significantly higher than those of the controls; thus, mutation of the CHD2 gene led to an increase in the expression level of the REST gene. The mutations reported were all located in conserved positions in different species. Among the various medications administered for treatment, valproate showed the best results for the treatment of epilepsy caused by CHD2 gene mutation. Conclusion: Mutation in CHD2 did not lead to a significant decrease in its expression level, indicating that the clinical phenotype was unrelated to its expression level, and the mutant protein may retain some function. Most of the mutations relatively stable. In addition, the clinical manifestations from the same mutation in the CHD2 gene were different among the known cases; this may be related to the regulation of REST or other regulatory factors.

9.
Front Pediatr ; 9: 679342, 2021.
Article in English | MEDLINE | ID: mdl-34912755

ABSTRACT

The gene encoding collagen like tail subunit of asymmetric acetylcholinesterase (COLQ) is responsible for the transcription of three strands of collagen of acetylcholinesterase, which is attached to the endplate of neuromuscular junctions. Mutations in the COLQ gene are inherited in an autosomal-recessive manner and can lead to type V congenital myasthenia syndrome (CMS), which manifests as decreased muscle strength at birth or shortly after birth, respiratory failure, restricted eye movements, drooping of eyelids, and difficulty swallowing. Here we reported three variants within COLQ in two unrelated children with CMS. An intronic variant (c.393+1G>A) and a novel missense variant (p.Q381P) were identified as compound heterozygous in a 13-month-old boy, with the parents being carriers of each. An intragenic deletion including exons 14 and 15 was found in a homozygous state in a 12-year-old boy. We studied the relative expression of the COLQ and AChE gene in the probands' families, performed three-dimensional protein structural analysis, and analyzed the conservation of the missense mutation c.1142A>C (p.Q381P). The splicing mutation c.393+1G>A was found to affect the normal splicing of COLQ exon 5, resulting in a 27-bp deletion. The missense mutation c.1142A>C (p.Q381P) was located in a conserved position in different species. We found that homozygous deletion of COLQ exons 14-15 resulted in a 241-bp deletion, which decreased the number of amino acids and caused a frameshift translation. COLQ expression was significantly lower in the probands than in the probands' parents and siblings, while AChE expression was significantly higher. Moreover, the mutations were found to cause significant differences in the predicted three-dimensional structure of the protein. The splicing mutation c.393+1G>A, missense mutation c.1A>C (p.Q381P), and COLQ exon 14-15 deletion could cause CMS.

10.
PLoS Comput Biol ; 17(12): e1009630, 2021 12.
Article in English | MEDLINE | ID: mdl-34851956

ABSTRACT

RNA editing is a co- or post-transcriptional modification through which some cells can make discrete changes to specific nucleotide sequences within an RNA molecule after transcription. Previous studies found that RNA editing may be critically involved in cancer and aging. However, the function of RNA editing in human early embryo development is still unclear. In this study, through analyzing single cell RNA sequencing data, 36.7% RNA editing sites were found to have a have differential editing ratio among early embryo developmental stages, and there was a great reprogramming of RNA editing rates at the 8-cell stage, at which most of the differentially edited RNA editing sites (99.2%) had a decreased RNA editing rate. In addition, RNA editing was more likely to occur on RNA splicing sites during human early embryo development. Furthermore, long non-coding RNA (lncRNA) editing sites were found more likely to be on RNA splicing sites (odds ratio = 2.19, P = 1.37×10-8), while mRNA editing sites were less likely (odds ratio = 0.22, P = 8.38×10-46). Besides, we found that the RNA editing rate on lncRNA had a significantly higher correlation coefficient with the percentage spliced index (PSI) of lncRNA exons (R = 0.75, P = 4.90×10-16), which indicated that RNA editing may regulate lncRNA splicing during human early embryo development. Finally, functional analysis revealed that those RNA editing-regulated lncRNAs were enriched in signal transduction, the regulation of transcript expression, and the transmembrane transport of mitochondrial calcium ion. Overall, our study might provide a new insight into the mechanism of RNA editing on lncRNAs in human developmental biology and common birth defects.


Subject(s)
Embryonic Development , RNA Editing , RNA, Long Noncoding , Algorithms , Alternative Splicing , Calcium/metabolism , Computational Biology/methods , Exons , Genome , Humans , Mitochondria/metabolism , Odds Ratio , Oocytes/cytology , Polymorphism, Single Nucleotide , Programming Languages , RNA Splicing , Software
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(6): 531-535, 2021 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-34096019

ABSTRACT

OBJECTIVE: To study the correlation between DNA methylation patterns and gene expression in Down syndrome (DS). METHODS: Induced pluripotent stem cells (iPSCs) derived from normal controls and DS patients were subjected to whole genome bisulfite sequencing and differentially methylated region (DMR) screening. Statistical analysis for chromosomal and gene element distribution were carried out for DMR. Gene ontology (GO) and enrichment-based cluster analysis were used to explore the molecular function of differentially expressed genes. RESULTS: A total of 1569 DMR were identified in iPSCs derived from DS patients, for which the proportion of hypermethylation in promoter regions was significantly greater than that of the genebody. No DMR enrichment was noted on chromosome 21. Hypermethylation of the promoter and genebody was predicted to be inhibitory for gene expression. Functional clustering revealed the pathways related to neurodevelopmental, stem cell pluripotency and organ size regulation to be significantly correlated with differentially methylated genes. CONCLUSION: Extensive and stochastic anomalies of genome-wide DNA methylation has been discovered in iPSCs derived from DS patients, for which the pattern and molecular regulation of methylation were significantly different from those of normal controls. Above findings suggested that DNA methylation pattern may play a vital role in both the pathogenesis of neurodevelopmental disorders and other phenotypic abnormalities during early embryonic development.


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , DNA Methylation , Down Syndrome/genetics , Female , Humans , Pregnancy , Promoter Regions, Genetic , Whole Genome Sequencing
12.
Exp Ther Med ; 22(1): 701, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34007310

ABSTRACT

Down syndrome (DS), caused by the trisomy of chromosome 21, is one of the common chromosomal disorders, the main clinical manifestations of which are delayed nervous development and intellectual disability. Long non-coding RNAs (lncRNAs) have critical roles in various biological processes, including cell growth, cell cycle regulation and differentiation. The roles of abnormally expressed lncRNAs have been previously reported; however, the biological functions and regulatory patterns of lncRNAs in DS have remained largely elusive. The aim of the present study was to perform a whole-genome-wide identification of lncRNAs and mRNAs associated with DS. In addition, global expression profiling analysis of DS-induced pluripotent stem cells was performed and differentially expressed (DE) lncRNAs and mRNAs were screened. Furthermore, the target genes and functions of the DE lncRNAs were predicted using Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis. The results revealed that the majority of the lncRNAs exerted functions in DS via cis-acting target genes. In addition, the results of the enrichment analysis indicated that these target genes were mainly involved in nervous and muscle development in DS. In conclusion, this integrative analysis using lncRNA and mRNA profiling provided novel insight into the pathogenesis of DS and it may promote the diagnosis and development of novel therapeutics for this disease.

13.
Stem Cell Res ; 53: 102292, 2021 05.
Article in English | MEDLINE | ID: mdl-33774333

ABSTRACT

Mental retardation, X-linked 21/34 (MRX21/34), is a rare intellectual disability disease caused by mutations in the IL1RAPL1 (Interleukin-1 Receptor Accessory Protein-Like 1) gene. Using Sendai virus-mediated reprogramming, we established an induced pluripotent stem cell (iPSC) line from PBMCs collected from a ten-year-old boy with MRX21/34. The iPSCs showed stable amplification, expressed pluripotent genes, displayed a normal karyotype, and had characteristics of trilineage differentiation potential in an in vitro differentiation assay.


Subject(s)
Induced Pluripotent Stem Cells , Mental Retardation, X-Linked , Cell Differentiation , Child , China , Humans , Interleukin-1 Receptor Accessory Protein , Male , Sendai virus
14.
Food Funct ; 12(7): 3191-3205, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33735338

ABSTRACT

Fructooligosaccharides (FOS) can change gut microbiota composition and play a protective role in food allergy (FA). Furthermore, the protective mechanism of FOS against FA is unclear. In this study, intestinal flora and tryptophan (Trp) metabolites were investigated in a mouse model with FA supplemented with FOS. Meanwhile, we injected aryl hydrocarbon receptor antagonists (AhR-A) into a mouse model of FA supplemented with FOS to investigate whether T helper cell (Th) 17/regulatory T (Treg) cell balance was affected. Our research studies showed that dietary intake of FOS provided moderate protection from the intestinal inflammation induced by ovalbumin (OVA). This protective effect disappeared in AhR-A mice. The OVA mice manifestations had significantly lower bacterial richness, when compared to the normal control (NC) mice. Among fecal bacteria, the abundance of Akkermansiaceae (family level) and Verrucomicrobia (phylum level) increased and Ruminococcacere (phylum level) decreased in the feces of allergic mice. These changes were reversed by FOS treatment. FOS modulated the gut microbiome profiles that were altered in OVA mice, which showed an increase in the abundance of Ruminococcacere (phylum level) and a decrease in the abundance of Akkermansiaceae (family level) and Verrucomicrobia (phylum level). Liquid chromatography/tandem mass spectrometry (LC-MS/MS) analysis of Trp metabolites showed significant reductions in the level of kynurenine (kyn) in the serum of OVA mice, as compared to NC and FOS mice. Conversely, the levels of Trp and 5-hydroxytryptamine (5-HT) were significantly increased in OVA mice. Correlation analysis revealed a negative relationship between the relative abundance of Verrucomicrobiae (class level) and Akkermansiaceae (family level) with kyn, and a positive relationship with 5-HT. FOS significantly reduced interleukin-17A (IL-17A) and retinoic acid-associated nuclear orphan receptor-γt (RORγt) in FOS mice but not in AhR-A mice. FOS increased the level of interleukin-10 (IL-10) and Forkhead box P3 (Foxp3) in FOS mice but not in AhR-A mice. These findings suggest that FOS ameliorates allergic symptoms and impacts Th17/Treg balance in mice by modulating the gut microbiota composition and Trp metabolites. FOS may serve as an effective tool for the treatment of FA by regulating immune and gut microbiota.


Subject(s)
Food Hypersensitivity/prevention & control , Oligosaccharides/administration & dosage , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Oligosaccharides/pharmacology , Ovalbumin , T-Lymphocytes, Regulatory/drug effects , Th17 Cells/drug effects , Tryptophan/metabolism
15.
Cell Biol Int ; 45(7): 1383-1392, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33527608

ABSTRACT

Mental retardation is the main clinical manifestation of Down syndrome (DS), and neural abnormalities occur during the early embryonic period and continue throughout life. Tc1, a model mouse for DS, carries the majority part of the human chromosome 21 and has multiple neuropathy phenotypes similar to patients with DS. To explore the mechanism of early neural abnormalities of Tc1 mouse, induced pluripotent stem (iPS) cells from Tc1 mice were obtained, and genome-wide gene expression and methylation analysis were performed for Tc1 and wild-type iPS cells. Our results showed hypermethylation profiles for Tc1 iPS cells, and the abnormal genes were shown to be related to neurodevelopment and distributed on multiple chromosomes. In addition, important genes involved in neurogenesis and neurodevelopment were shown to be downregulated in Tc1 iPS cells. In short, our study indicated that genome-wide hypermethylation leads to the disordered expression of genes associated with neurodevelopment in Tc1 mice during early development. Overall, our work provided a useful reference for the study of the molecular mechanism of nervous system abnormalities in DS.


Subject(s)
Down Syndrome/genetics , Neurogenesis/genetics , Animals , Cells, Cultured , DNA Methylation , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells , Mice
16.
Stem Cell Res ; 46: 101872, 2020 07.
Article in English | MEDLINE | ID: mdl-32603881

ABSTRACT

Allan-Herndon-Dudley syndrome (AHDS) is a rare, X-chromosome-linked inherited disorder that affects brain development and is caused by a mutation in SLC16A2. Herein, we generated an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells of a one-year-old male infant with AHDS using Sendai-virus-mediated reprogramming. These iPSCs exhibited stable amplification, expressed pluripotent markers, and differentiated spontaneously into three germ layers in vitro. Additionally, this iPSC line was found to maintain a normal karyotype and retain the pathogenic mutation in SLC16A2, facilitating the study of disease mechanisms and development of new therapies of AHDS.


Subject(s)
Induced Pluripotent Stem Cells , Symporters , China , Humans , Infant , Leukocytes, Mononuclear , Male , Mental Retardation, X-Linked , Monocarboxylic Acid Transporters , Muscle Hypotonia , Muscular Atrophy
17.
Stem Cell Res ; 46: 101838, 2020 07.
Article in English | MEDLINE | ID: mdl-32505899

ABSTRACT

Mediator complex subunit 12 (MED12)-related disorders are recessive-X-linked intellectual disabilities present primarily in male patients. We came across a female patient with a heterozygous mutation (c.1249-1G > C) related to MED12-related syndrome. MED12 expression was significantly lower than that in her parents, and another X chromosome was inactive. We established an induced pluripotent stem cell (iPSC) line from peripheral blood mononuclear cells (PBMCs) of a 1-year old Chinese girl with a heterozygous mutation (c.1249-1G > C) in MED12. PBMCs were reprogrammed using nonintegrative Sendai viral vectors. The iPSCs showed stable amplification, pluripotency-related gene expression, trilineage differentiation potential, and a normal karyotype.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Cell Line , Cellular Reprogramming , China , Female , Humans , Infant , Karyotype , Leukocytes, Mononuclear , Male , Mediator Complex/genetics
18.
J Diabetes Res ; 2019: 5184647, 2019.
Article in English | MEDLINE | ID: mdl-31143779

ABSTRACT

BACKGROUND: The syndrome of maternally inherited diabetes and deafness (MIDD) is typically caused by the m.3243A>G mutation and widely considered maternally inherited. In our study, we aimed to investigate the heredity way of the m.3243A>G among pedigrees with MIDD and discover novel mitochondrial DNA mutations related to atypical clinical phenotypes. METHODS: Heteroplasmy levels of the m.3243A>G mutation in peripheral blood, saliva, and urine sediment of 31 individuals from 10 unrelated pedigrees were measured by pyrosequencing. Clinical evaluations including endocrinological, audiological, and magnetic resonance imaging (MRI) examinations, mitochondrial function evaluation in peripheral blood mononuclear cells (PBMCs), and whole mitochondrial DNA (mtDNA) sequencing were performed among the spontaneous mutant pedigrees. RESULTS: Among the 10 unrelated MIDD pedigrees, we found that the de novo m.3243A>G mutation occurred in the family 1957 (F1957). The proband (F1957-II-1) and her son (F1957-III-1) both manifested diabetes with mild bilateral sensorineural hearing loss (SNHL) and abnormal brain MRI, and F1957-III-1 also complained of severe nausea and vomiting. Mitochondrial function evaluation in PBMCs revealed an increased level of ROS generation and decreased levels of ATP and mitochondrial membrane potential (ΔΨm) in the two m.3243A>G carriers. Whole mtDNA sequencing also revealed a de novo heteroplasmic substitution at m.16093T>C in both the proband and her son. CONCLUSIONS: Our study showed that de novo m.3243A>G mutation accompanied by other point mutations may occur in the very early embryonic or germ cell stage without maternal inheritance, bringing about both typical and atypical clinical features.


Subject(s)
DNA, Mitochondrial/genetics , Deafness/genetics , Deafness/physiopathology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Leucine/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/physiopathology , RNA, Transfer/genetics , Adenosine Triphosphate/metabolism , Adult , Aged , Aged, 80 and over , Family Health , Female , Genetic Predisposition to Disease , Humans , Leukocytes, Mononuclear/cytology , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Pedigree , Phenotype , Point Mutation , Reactive Oxygen Species/metabolism , Sequence Analysis, DNA
19.
Hum Gene Ther ; 29(2): 197-203, 2018 02.
Article in English | MEDLINE | ID: mdl-29357712

ABSTRACT

Thalassemia is a recessive monogenic hematological disease associated with reduced amounts of functional hemoglobin caused by mutations/deletions in at least one of the globin genes. This disease has attracted significant attention throughout the years in terms of genetic diagnosis and developments in gene and cell therapy. Here, recent progress is reviewed in the genetic diagnosis and development of therapeutics for thalassemia, particularly ß-thalassemia, in China and around the world.


Subject(s)
Cell- and Tissue-Based Therapy/trends , Genetic Therapy/trends , beta-Globins/genetics , beta-Thalassemia/therapy , China , Humans , beta-Globins/therapeutic use , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics
20.
Int J Biochem Cell Biol ; 92: 115-120, 2017 11.
Article in English | MEDLINE | ID: mdl-28965985

ABSTRACT

Trisomy 21 is the most common chromosomal disorder and underlies Down syndrome. Epigenetics, such as DNA methylation and post-translational histone modifications, plays a vital role in Down syndrome. However, the functions of epigenetics-related long noncoding RNAs (lncRNAs), found to have an impact on neural diseases such as Alzheimer's disease, remain unknown in Down syndrome. In this study, we analyzed the RNA sequencing data from Down syndrome-induced pluripotent stem cells (iPSCs) and normal iPSCs. A large number of lncRNAs were identified differentially expressed in Down syndrome-iPSCs. Notably, stronger perturbation was shown in the expression of lncRNAs compared to protein coding genes (Kolmogorov-Smirnov test, P<0.05), suggesting that lncRNAs play more important roles in Down syndrome. Through gene set enrichment analysis and bi-clustering, we also found that most of the differential expressed lncRNAs were closely associated with mitochondrial functions (e.g. mitochondrion organization, P=3.21×10-17; mitochondrial ATP synthesis coupled electron transport, P=1.73×10-19 and mitochondrial membrane organization, P=4.04×10-8). PCR-array and qRT-PCR results revealed that almost all genes related to mitochondria were down-regulated in Down syndrome-iPSCs, implying that mitochondria were dysfunctional in Down syndrome (e.g. ATP5B, Fold Change=-8.2317; COX6A1, Fold Change=-12.7788 and SLC25A17, Fold Change=-22.1296). All in all, our study indicated that a stronger perturbation of lncRNAs expression may lead to the dysfunction of mitochondria in Down syndrome.


Subject(s)
Down Syndrome/genetics , Down Syndrome/pathology , Gene Expression Profiling , Mitochondria/genetics , RNA, Long Noncoding/genetics , Humans , Induced Pluripotent Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...