Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 310: 116398, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-36948264

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cytochrome P3A4 (CYP3A4) is a crucial drug-metabolizing enzyme, and its expression is regulated by the pregnane X receptor (PXR), constitutive androstane receptor (CAR), steroid receptor coactivator 1 (SRC-1), and acetyltransferase P300. Panaxytriol is a naturally derived active substance extracted from the roots of Panax ginseng C. A. Mey. which is widely used clinically. Our previous studies have shown that panaxytriol induces CYP3A4 expression through PXR activation, which is antagonized by high CAR expression. However, the underlying mechanism remains unclear. AIM OF THE STUDY: This study aimed to investigate the mechanism of panaxytriol in inducing CYP3A4 expression via interactions between nuclear regulators and DNA response elements. MATERIALS AND METHODS: Immunoprecipitation technique was used to assess the binding levels of PXR and CAR with the coactivators SRC-1 and P300 in HepG2 and Huh-7 cells. Furthermore, chromatin immunoprecipitation assay was used to investigate the PXR and CAR interaction with the CYP3A4 promoter response element ER-6/DR-3. RESULTS: The binding of PXR to SRC-1, P300, and the response elements ER-6 and DR-3 was improved with an increase in panaxytriol concentration (10-80 µM), and the binding affinity was further enhanced upon CAR silencing. The binding of CAR to SRC-1 and the response elements ER-6 and DR-3 was significantly higher at 80 µM panaxytriol, whereas no significant binding was observed between CAR and P300. CONCLUSION: Panaxytriol promoted the recruitment of PXR to SRC-1 and P300, binding to ER-6 and DR-3, and upregulating CYP3A4 expression. Furthermore, an interactive dialogue regulatory mechanism between PXR and CAR was observed.


Subject(s)
Receptors, Steroid , Humans , Receptors, Steroid/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Hep G2 Cells , Response Elements , DNA
2.
Phytomedicine ; 101: 154097, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35417848

ABSTRACT

BACKGROUND: Cytochrome P450 3A4 (CYP3A4) is one of the most important drug-metabolizing enzymes in the human body, mainly existing in the liver, small intestine, and kidney. Panaxytriol is one of the key active components in red ginseng and Shenmai injection. Our previous study demonstrated that panaxytriol regulates CYP3A4 expression mainly by activating pregnancy X receptor (PXR). At a high concentration of panaxytriol (80 µM), the constitutive androstane receptor (CAR) is also involved in the upregulation of CYP3A4. PURPOSE: This study investigated how the cofactors heat shock protein 90 alpha (HSP90α) and retinoid X receptor alpha (RXRα) interact with PXR and CAR to participate in the regulation of CYP3A4 by panaxytriol from the perspective of the PXR and CAR interaction. METHODS: The mRNA and protein expressions of PXR, CAR, CYP3A4, RXRα, and HSP90α in HepG2 cells and Huh-7 cells were detected by quantitative PCR and western blot analysis, respectively. The binding levels of PXR and CAR to RXRα and HSP90α were determined by co-immunoprecipitation analysis. The nuclear translocation of PXR and RXRα into HepG2 cells and human (hCAR)-silenced HepG2 cells were measured by immunofluorescence. RESULTS: In HepG2 cells and Huh-7 cells, panaxytriol (10-80 µM) upregulated CYP3A4 expression in a concentration-dependent manner by decreasing PXR binding to HSP90α and increasing PXR binding to RXRα. When hCAR was silenced, panaxytriol further enhanced CYP3A4 expression by strengthening PXR binding to RXRα, but it had no significant effect on the binding level of PXR and HSP90α. Additionally, at the high concentration of 80 µM panaxytriol, CAR binding to HSP90α was weakened while binding to RXRα was enhanced. CONCLUSION: Panaxytriol can upregulate CYP3A4 expression by promoting PXR dissociation from HSP90α and enhancing PXR binding to RXRα in HepG2 cells and Huh-7 cells. At high concentrations of panaxytriol, CAR also participates in the induction of CYP3A4 through a similar mechanism. However, in general, CAR antagonizes PXR binding to RXRα, thereby attenuating the upregulation of CYP3A4 by panaxytriol.


Subject(s)
Cytochrome P-450 CYP3A , Receptors, Steroid , Constitutive Androstane Receptor , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Enediynes , Fatty Alcohols , Hepatocytes , Humans , Pregnane X Receptor/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Steroid/genetics
SELECTION OF CITATIONS
SEARCH DETAIL