Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
3.
Cell Discov ; 9(1): 110, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37935676

ABSTRACT

Phase separation, a biophysical segregation of subcellular milieus referred as condensates, is known to regulate transcription, but its impacts on physiological processes are less clear. Here, we demonstrate the formation of liquid-like nuclear condensates by SGF29, a component of the SAGA transcriptional coactivator complex, during cellular senescence in human mesenchymal progenitor cells (hMPCs) and fibroblasts. The Arg 207 within the intrinsically disordered region is identified as the key amino acid residue for SGF29 to form phase separation. Through epigenomic and transcriptomic analysis, our data indicated that both condensate formation and H3K4me3 binding of SGF29 are essential for establishing its precise chromatin location, recruiting transcriptional factors and co-activators to target specific genomic loci, and initiating the expression of genes associated with senescence, such as CDKN1A. The formation of SGF29 condensates alone, however, may not be sufficient to drive H3K4me3 binding or achieve transactivation functions. Our study establishes a link between phase separation and aging regulation, highlighting nuclear condensates as a functional unit that facilitate shaping transcriptional landscapes in aging.

5.
Nature ; 624(7992): 611-620, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37907096

ABSTRACT

Ageing is a critical factor in spinal-cord-associated disorders1, yet the ageing-specific mechanisms underlying this relationship remain poorly understood. Here, to address this knowledge gap, we combined single-nucleus RNA-sequencing analysis with behavioural and neurophysiological analysis in non-human primates (NHPs). We identified motor neuron senescence and neuroinflammation with microglial hyperactivation as intertwined hallmarks of spinal cord ageing. As an underlying mechanism, we identified a neurotoxic microglial state demarcated by elevated expression of CHIT1 (a secreted mammalian chitinase) specific to the aged spinal cords in NHP and human biopsies. In the aged spinal cord, CHIT1-positive microglia preferentially localize around motor neurons, and they have the ability to trigger senescence, partly by activating SMAD signalling. We further validated the driving role of secreted CHIT1 on MN senescence using multimodal experiments both in vivo, using the NHP spinal cord as a model, and in vitro, using a sophisticated system modelling the human motor-neuron-microenvironment interplay. Moreover, we demonstrated that ascorbic acid, a geroprotective compound, counteracted the pro-senescent effect of CHIT1 and mitigated motor neuron senescence in aged monkeys. Our findings provide the single-cell resolution cellular and molecular landscape of the aged primate spinal cord and identify a new biomarker and intervention target for spinal cord degeneration.


Subject(s)
Cellular Senescence , Chitinases , Microglia , Motor Neurons , Primates , Spinal Cord , Animals , Humans , Biomarkers/metabolism , Chitinases/metabolism , Microglia/enzymology , Microglia/metabolism , Microglia/pathology , Motor Neurons/metabolism , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Primates/metabolism , Reproducibility of Results , Single-Cell Gene Expression Analysis , Spinal Cord/metabolism , Spinal Cord/pathology
6.
Cell Rep ; 42(6): 112593, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37261950

ABSTRACT

The primate frontal lobe (FL) is sensitive to aging-related neurocognitive decline. However, the aging-associated molecular mechanisms remain unclear. Here, using physiologically aged non-human primates (NHPs), we depicted a comprehensive landscape of FL aging with multidimensional profiling encompassing bulk and single-nucleus transcriptomes, quantitative proteome, and DNA methylome. Conjoint analysis across these molecular and neuropathological layers underscores nuclear lamina and heterochromatin erosion, resurrection of endogenous retroviruses (ERVs), activated pro-inflammatory cyclic GMP-AMP synthase (cGAS) signaling, and cellular senescence in post-mitotic neurons of aged NHP and human FL. Using human embryonic stem-cell-derived neurons recapitulating cellular aging in vitro, we verified the loss of B-type lamins inducing resurrection of ERVs as an initiating event of the aging-bound cascade in post-mitotic neurons. Of significance, these aging-related cellular and molecular changes can be alleviated by abacavir, a nucleoside reverse transcriptase inhibitor, either through direct treatment of senescent human neurons in vitro or oral administration to aged mice.


Subject(s)
Endogenous Retroviruses , Animals , Mice , Nuclear Lamina , Aging/physiology , Cellular Senescence/genetics , Neurons , Primates
7.
Protein Cell ; 14(3): 180-201, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36933008

ABSTRACT

Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.


Subject(s)
Presbycusis , Transcriptome , Mice , Animals , Aging/metabolism , Cochlea , Stria Vascularis
8.
Mol Ther ; 31(3): 847-865, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36639869

ABSTRACT

The role of Abraxas 2 (ABRO1 or KIAA0157), a component of the lysine63-linked deubiquitinating system, in the cardiomyocyte proliferation and myocardial regeneration is unknown. Here, we found that ABRO1 regulates cardiomyocyte proliferation and cardiac regeneration in the postnatal heart by targeting METTL3-mediated m6A methylation of Psph mRNA. The deletion of ABRO1 increased cardiomyocyte proliferation in hearts and restored the heart function after myocardial injury. On the contrary, ABRO1 overexpression significantly inhibited the neonatal cardiomyocyte proliferation and cardiac regeneration in mouse hearts. The mechanism by which ABRO1 regulates cardiomyocyte proliferation mainly involved METTL3-mediated Psph mRNA methylation and CDK2 phosphorylation. In the early postnatal period, METTL3-dependent m6A methylation promotes cardiomyocyte proliferation by hypermethylation of Psph mRNA and upregulating PSPH expression. PSPH dephosphorylates cyclin-dependent kinase 2 (CDK2), a positive regulator of cell cycle, at Thr14/Tyr15 and increases its activity. Upregulation of ABRO1 restricts METTL3 activity and halts the cardiomyocyte proliferation in the postnatal hearts. Thus, our study reveals that ABRO1 is an essential contributor in the cell cycle withdrawal and attenuation of proliferative response in the postnatal cardiomyocytes and could act as a potential target to accelerate cardiomyocyte proliferation and cardiac repair in the adult heart.


Subject(s)
Myocardium , Myocytes, Cardiac , Nuclear Matrix-Associated Proteins , Phosphoric Monoester Hydrolases , Animals , Mice , Animals, Newborn , Cell Proliferation , Heart/physiology , Myocytes, Cardiac/metabolism , RNA, Messenger/metabolism , Nuclear Matrix-Associated Proteins/metabolism , Phosphoric Monoester Hydrolases/metabolism
9.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36610399

ABSTRACT

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Subject(s)
Aging , Endogenous Retroviruses , Aged , Animals , Humans , Mice , Aging/genetics , Aging/pathology , Cellular Senescence , Endogenous Retroviruses/genetics , Primates
12.
Cell Discov ; 8(1): 6, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35102134

ABSTRACT

Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.

14.
Nat Aging ; 2(4): 303-316, 2022 04.
Article in English | MEDLINE | ID: mdl-37117743

ABSTRACT

Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.


Subject(s)
Apolipoproteins E , Heterochromatin , Humans , Aged , Heterochromatin/genetics , Apolipoproteins E/genetics , Cellular Senescence/genetics , Aging/genetics , Chromobox Protein Homolog 5 , Nuclear Proteins/genetics
15.
Cell Rep ; 37(3): 109854, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686341

ABSTRACT

Despite the tremendous success of targeted and conventional therapies for lung cancer, therapeutic resistance is a common and major clinical challenge. RNF8 is a ubiquitin E3 ligase that plays essential roles in the DNA damage response; however, its role in the pathogenesis of lung cancer is unclear. Here, we report that RNF8 is overexpressed in lung cancer and positively correlates with the expression of p-Akt and poor survival of patients with non-small-cell lung cancer. In addition, we identify RNF8 as the E3 ligase for regulating the activation of Akt by K63-linked ubiquitination under physiological and genotoxic conditions, which leads to lung cancer cell proliferation and resistance to chemotherapy. Together, our study suggests that RNF8 could be a very promising target in precision medicine for lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , DNA Damage/drug effects , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Ubiquitin-Protein Ligases/metabolism , A549 Cells , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Proliferation/drug effects , DNA-Binding Proteins/genetics , Enzyme Activation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice, Inbred BALB C , Mice, Nude , Phosphorylation , Signal Transduction , Tumor Burden/drug effects , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Xenograft Model Antitumor Assays
16.
Protein Cell ; 12(9): 695-716, 2021 09.
Article in English | MEDLINE | ID: mdl-34052996

ABSTRACT

The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.


Subject(s)
Aging/genetics , Hippocampus/metabolism , Macaca mulatta/genetics , Nerve Tissue Proteins/genetics , Neurogenesis/genetics , Transcriptome , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , DNA Damage , Endothelial Cells/cytology , Endothelial Cells/metabolism , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Heterochromatin/chemistry , Heterochromatin/metabolism , High-Throughput Nucleotide Sequencing , Hippocampus/cytology , Hippocampus/growth & development , Humans , Inflammation , Long Interspersed Nucleotide Elements , Macaca mulatta/growth & development , Macaca mulatta/metabolism , Male , Microglia/cytology , Microglia/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neurons/cytology , Neurons/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Single-Cell Analysis
17.
Cell Res ; 31(2): 187-205, 2021 02.
Article in English | MEDLINE | ID: mdl-32737416

ABSTRACT

Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.


Subject(s)
CLOCK Proteins/metabolism , Cartilage, Articular/physiology , Cellular Senescence/genetics , Heterochromatin/metabolism , Mesenchymal Stem Cells/metabolism , Regeneration/genetics , Rejuvenation , Aging/metabolism , Animals , CLOCK Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Genetic Therapy/methods , Genetic Vectors/therapeutic use , HEK293 Cells , Humans , Mesenchymal Stem Cell Transplantation/methods , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Transfection
18.
Cell Rep ; 32(1): 107870, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32640235

ABSTRACT

DNA:RNA hybrids play key roles in both physiological and disease states by regulating chromatin and genome organization. Their homeostasis during cell differentiation and cell plasticity remains elusive. Using an isogenic human stem cell platform, we systematically characterize R-loops, DNA methylation, histone modifications, and chromatin accessibility in pluripotent cells and their lineage-differentiated derivatives. We confirm that a portion of R-loops formed co-transcriptionally at pluripotency genes in pluripotent stem cells and at lineage-controlling genes in differentiated lineages. Notably, a subset of R-loops maintained after differentiation are associated with repressive chromatin marks on silent pluripotency genes and undesired lineage genes. Moreover, in reprogrammed pluripotent cells, cell-of-origin-specific R-loops are initially present but are resolved with serial passaging. Our analysis suggests a multifaceted role of R-loops in cell fate determination that may serve as an additional layer of modulation on cell fate memory and cell plasticity.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Genome, Human , R-Loop Structures/genetics , Animals , Cell Lineage/genetics , Cells, Cultured , Chromatin/metabolism , Epigenesis, Genetic , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Transcription, Genetic
19.
Nucleic Acids Res ; 48(11): 6001-6018, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32427330

ABSTRACT

Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has long been known as a master transcriptional repressor of autophagy. Here, we identify a novel role for ZKSCAN3 in alleviating senescence that is independent of its autophagy-related activity. Downregulation of ZKSCAN3 is observed in aged human mesenchymal stem cells (hMSCs) and depletion of ZKSCAN3 accelerates senescence of these cells. Mechanistically, ZKSCAN3 maintains heterochromatin stability via interaction with heterochromatin-associated proteins and nuclear lamina proteins. Further study shows that ZKSCAN3 deficiency results in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, loss of heterochromatin, a more accessible chromatin status and consequently, aberrant transcription of repetitive sequences. Overexpression of ZKSCAN3 not only rescues premature senescence phenotypes in ZKSCAN3-deficient hMSCs but also rejuvenates physiologically and pathologically senescent hMSCs. Together, these data reveal for the first time that ZKSCAN3 functions as an epigenetic modulator to maintain heterochromatin organization and thereby attenuate cellular senescence. Our findings establish a new functional link among ZKSCAN3, epigenetic regulation, and stem cell aging.


Subject(s)
Cellular Senescence , Epigenesis, Genetic , Heterochromatin/metabolism , Transcription Factors/metabolism , Animals , Cellular Senescence/genetics , Down-Regulation , Heterochromatin/genetics , Humans , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Mice , Transcription Factors/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL