Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1368165, 2024.
Article in English | MEDLINE | ID: mdl-38915923

ABSTRACT

Background: Mucormycosis is an uncommon invasive fungal infection that has a high mortality rate in patients with severe underlying diseases, which leads to immunosuppression. Due to its rarity, determining the incidence and optimal treatment methods for mucormycosis in children is challenging. Metagenomic next-generation sequencing (mNGS) is a rapid, precise and sensitive method for pathogen detection, which helps in the early diagnosis and intervention of mucormycosis in children. In order to increase pediatricians' understanding of this disease, we conducted a study on the clinical features of mucormycosis in children and assessed the role of mNGS in its diagnosis. Methods: We retrospectively summarized the clinical data of 14 children with mucormycosis treated at the First Affiliated Hospital of Zhengzhou University from January 2020 to September 2023. Results: Of the 14 cases, 11 case of mucormycosis were classified as probable, and 3 cases were proven as mucormycosis. Most children (85.71%) had high-risk factors for mucormycosis. All 14 children had lung involvement, with 5 cases of extrapulmonary dissemination. Among the 14 cases, 4 cases underwent histopathological examination of mediastinum, lung tissue or kidney tissue, in which fungal pathogens were identified in 3 patients. Fungal hyphae was identified in 3 cases of mucormycosis, but only 1 case yielded a positive culture result. All patients underwent mNGS testing with samples from blood (8/14), bronchoalveolar lavage fluid (6/14), and tissue (1/14). mNGS detected fungi in all cases: 7 cases had Rhizomucor pusillus, 4 cases had Rhizopus oryzae, 3 cases had Rhizopus microsporus, 1 case had Lichtheimia ramosa, and 1 case had Rhizomucor miehei. Coinfections were found with Aspergillus in 3 cases, bacteria in 3 cases, and viruses in 5 cases. Conclusion: Children with mucormycosis commonly exhibit non-specific symptoms like fever and cough during the initial stages. Early diagnosis based on clinical symptoms and imaging is crucial in children suspected of having mucormycosis. mNGS, as a supplementary diagnostic method, offers greater sensitivity and shorter detection time compared to traditional mucormycosis culture or histopathological testing. Additionally, mNGS enables simultaneous detection of bacteria and viruses, facilitating timely and appropriate administration of antibiotics and thereby enhancing patient outcomes.


Subject(s)
High-Throughput Nucleotide Sequencing , Metagenomics , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/microbiology , High-Throughput Nucleotide Sequencing/methods , Male , Female , Child , Child, Preschool , Metagenomics/methods , Retrospective Studies , Infant , Adolescent , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , China
2.
Front Cell Infect Microbiol ; 14: 1393242, 2024.
Article in English | MEDLINE | ID: mdl-38912204

ABSTRACT

Background: Invasive mold diseases of the central nervous (CNS IMD) system are exceedingly rare disorders, characterized by nonspecific clinical symptoms. This results in significant diagnostic challenges, often leading to delayed diagnosis and the risk of misdiagnosis for patients. Metagenomic Next-Generation Sequencing (mNGS) holds significant importance for the diagnosis of infectious diseases, especially in the rapid and accurate identification of rare and difficult-to-culture pathogens. Therefore, this study aims to explore the clinical characteristics of invasive mold disease of CNS IMD in children and assess the effectiveness of mNGS technology in diagnosing CNS IMD. Methods: Three pediatric patients diagnosed with Invasive mold disease brain abscess and treated in the Pediatric Intensive Care Unit (PICU) of the First Affiliated Hospital of Zhengzhou University from January 2020 to December 2023 were selected for this study. Results: Case 1, a 6-year-old girl, was admitted to the hospital with "acute liver failure." During her hospital stay, she developed fever, irritability, and seizures. CSF mNGS testing resulted in a negative outcome. Multiple brain abscesses were drained, and Aspergillus fumigatus was detected in pus culture and mNGS. The condition gradually improved after treatment with voriconazole combined with caspofungin. Case 2, a 3-year-old girl, was admitted with "acute B-lymphoblastic leukemia." During induction chemotherapy, she developed fever and seizures. Aspergillus fumigatus was detected in the intracranial abscess fluid by mNGS, and the condition gradually improved after treatment with voriconazole combined with caspofungin, followed by "right-sided brain abscess drainage surgery." Case 3, a 7-year-old girl, showed lethargy, fever, and right-sided limb weakness during the pending chemotherapy period for acute B-lymphoblastic leukemia. Rhizomucor miehei and Rhizomucor pusillus was detected in the cerebrospinal fluid by mNGS. The condition gradually improved after treatment with amphotericin B combined with posaconazole. After a six-month follow-up post-discharge, the three patients improved without residual neurological sequelae, and the primary diseases were in complete remission. Conclusion: The clinical manifestations of CNS IMD lack specificity. Early mNGS can assist in identifying the pathogen, providing a basis for definitive diagnosis. Combined surgical treatment when necessary can help improve prognosis.


Subject(s)
Antifungal Agents , Brain Abscess , High-Throughput Nucleotide Sequencing , Metagenomics , Humans , Female , Child , Metagenomics/methods , Brain Abscess/microbiology , Brain Abscess/diagnosis , Brain Abscess/drug therapy , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology , Invasive Fungal Infections/drug therapy , Male , Central Nervous System Fungal Infections/diagnosis , Central Nervous System Fungal Infections/microbiology , Central Nervous System Fungal Infections/drug therapy , Child, Preschool , Aspergillus fumigatus/genetics , Aspergillus fumigatus/isolation & purification , Caspofungin/therapeutic use
3.
Front Cell Infect Microbiol ; 12: 946849, 2022.
Article in English | MEDLINE | ID: mdl-36189365

ABSTRACT

Bartonella henselae, the pathogen that causes cat-scratch disease (CSD), is relatively rare in the clinic. CSD usually causes mild clinical manifestations, which self-heal in a matter of weeks. However, in immunocompromised patients, CSD may cause systemic disorders that can lead to critical illness. Due to the diversity of symptom signs and the lack of a golden standard for diagnosis, identifying atypical CSD in a timely manner presents a challenge. Metagenomic next-generation sequencing (mNGS), is a promising technology that has been widely used in the detection of pathogens in clinical infectious diseases in recent years. mNGS can detect multiple pathogens quickly and accurately from any given source. Here, we present a case of atypical CSD, which was diagnosed using mNGS. The patient manifested a fever of unknown infectious origin, and routine antibiotic treatment was ineffective. mNGS was employed to test the patient's peripheral blood, which led to the detection of B. henselae. This was rarely seen in previous CSD reports. We surmised that the patient presented with atypical CSD and thus a targeted therapy was recommended. Crucially, the patient recovered rapidly. Based on this case study findings, we recommend that CSD should be included in the differential diagnosis for fever of unknown origin and that mNGS may be helpful in the diagnosis of CSD.


Subject(s)
Bartonella henselae , Cat-Scratch Disease , Anti-Bacterial Agents/therapeutic use , Bartonella henselae/genetics , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/drug therapy , Diagnosis, Differential , High-Throughput Nucleotide Sequencing , Humans
SELECTION OF CITATIONS
SEARCH DETAIL