Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(12): e2307241, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38234213

ABSTRACT

The transient electron donor-acceptor (EDA) complex has been an emerging area in the photoinduced organic synthesis field, generating radicals without exogenous transition-metal or organic dye-based photoredox catalysts. The catalytic platform to form suitable photoactive EDA complexes for photochemical reduction reactions remains underdeveloped. Herein, a general photoinduced reductive alkylation via the EDA complex strategy is described. A simple yet multifunctional system, triphenylphosphine and iodide salt, promotes the photoinduced decarboxylative hydroalkylation, and reductive defluorinative decarboxylative alkylation of trifluoromethyl alkenes, to access trifluoromethyl alkanes and gem-difluoroalkenes. Moreover, decarboxylative hydroalkylation can be applied to more kinds of electron-deficient alkenes as a general Giese addition reaction.

2.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805912

ABSTRACT

The peptidase M24 (Metallopeptidase 24, M24) superfamily is essential for plant growth, stress response, and pathogen defense. At present, there are few systematic reports on the identification and classification of members of the peptidase M24 proteins superfamily in wheat. In this work, we identified 53 putative candidate TaM24 genes. According to the protein sequences characteristics, these members can be roughly divided into three subfamilies: I, II, III. Most TaM24 genes are complex with multiple exons, and the motifs are relatively conserved in each sub-group. Through chromosome mapping analysis, we found that the 53 genes were unevenly distributed on 19 wheat chromosomes (except 3A and 3D), of which 68% were in triads. Analysis of gene duplication events showed that 62% of TaM24 genes in wheat came from fragment duplication events, and there were no tandem duplication events to amplify genes. Analysis of the promoter sequences of TaM24 genes revealed that cis-acting elements were rich in response elements to drought, osmotic stress, ABA, and MeJA. We also studied the expression of TaM24 in wheat tissues at developmental stages and abiotic stress. Then we selected TaM24-9 as the target for further analysis. The results showed that TaM24-9 genes strengthened the drought and salt tolerance of plants. Overall, our analysis showed that members of the peptidase M24 genes may participate in the abiotic stress response and provided potential gene resources for improving wheat resistance.


Subject(s)
Gene Expression Regulation, Plant , Triticum , Genome, Plant , Multigene Family , Peptide Hydrolases/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Triticum/metabolism
3.
BMC Immunol ; 23(1): 28, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659256

ABSTRACT

BACKGROUND: Enhancer of Zeste homologue 2 (EZH2) is a polycomb group gene and an epigenetic regulator that inhibits transcription, a modification associated with gene silencing. EZH2 plays an essential role in humoral and cell-mediated adaptive immunity. The purpose of the current study is to investigate the prognostic potential of EZH2 and to comprehensively analyse the correlation between EZH2 and immune infiltration in multiple cancer cases, especially liver hepatocellular carcinoma. METHODS: EZH2 expression across cancers was explored through Oncomine, HPA, and GEPIA2. Additionally, the prognostic value of EZH2 analysis across cancers was based on the GEPIA2, TCGA portal, Kaplan-Meier Plotter, and LOGpc databases. Based on GO and KEGG analyses, GSEA helped demonstrate the biological processes through which EZH2 might lead to HCC development. GEPIA and TIMER were adopted to detect the possible relationship of EZH2 expression with tumour-infiltrating immune cells (TIICs). RESULTS: EZH2 overexpression levels were associated with poor prognosis of cancer, especially hepatocellular carcinoma. A high EZH2 expression level is related to a poor prognosis of HCC, especially in disease histology and stage III. The EZH2 expression level was positively correlated with critical gene markers of TAMs, M2 macrophages, M1 macrophages, and monocytes. Further analysis revealed that EZH2 genes were mainly related to DNA recombination, mitotic cell cycle phase transition, and chromosome segregation. CONCLUSION: EZH2 plays an essential role in the immune microenvironment and is a potential prognostic marker and immunotherapy target for hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Prognosis , Tumor Microenvironment/genetics
4.
BMC Gastroenterol ; 21(1): 416, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34724892

ABSTRACT

BACKGROUND: MKI67 plays a vital role in the tumour microenvironment (TME) and congenital immunity. The present work focuses on exploring the prognosis prediction performance of MKI67 and its associations with T cell activity and immune infiltration within numerous cancers, especially hepatocellular liver carcinoma (LIHC). METHODS: Oncomine, GEPIA2, and HPA were adopted to analyse MKI67 levels in different types of cancers. The prognostic prediction performance of MKI67 was evaluated through the TCGA portal, GEPIA2, LOGpc, and Kaplan-Meier Plotter databases. The associations of MKI67 with related gene marker sets and immune infiltration were inspected through TISIDB, GEPIA2, and TIMER. We chose MKI67 to analyse biological processes (BPs) and KEGG pathways related to the coexpressed genes. Furthermore, the gene-miRNA interaction network for MKI67 in liver cancer was also examined based on the miRWalk database. RESULTS: MKI67 expression decreased in many cancers related to the dismal prognostic outcome of LIHC. We found that MKI67 significantly affected the prognosis of LIHC in terms of histology and grade. Increased MKI67 levels were directly proportional to the increased immune infiltration degrees of numerous immune cells and functional T cells, such as exhausted T cells. In addition, several critical genes related to exhausted T cells, including TIM-3, TIGIT, PD-1, LAG3, and CXCL13, were strongly related to MKI67. Further analyses showed that MKI67 was associated with adaptive immunity, cell adhesion molecules (CAMs), and chemokine/immune response signal transduction pathways. CONCLUSION: MKI67 acts as a prognostic prediction biomarker in several cancers, particularly LIHC. Upregulation of MKI67 elevates the degree of immune infiltration of many immune cell subtypes, including functional T cells, CD4+ T cells, and CD8+ T cells. Furthermore, MKI67 shows a close correlation with T cell exhaustion, which plays a vital role in promoting T cell exhaustion within LIHC. Detection of the MKI67 level contributes to prognosis prediction and MKI67 modulation within exhausted T cells, thus providing a new method to optimize the efficacy of anti-LIHC immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes , Humans , Prognosis , Tumor Microenvironment
5.
Chem Commun (Camb) ; 56(91): 14191-14194, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33107875

ABSTRACT

A method for Ni-catalyzed hydroalkylation of internal alkynes with cycloketone oxime esters was developed. The reaction has a broad substrate scope. This hydroalkylation shows excellent regio- and stereo-selectivity. This method enables readily available starting materials to be used to access a range of cyano-substituted single-configuration trisubstituted alkenes. These are valuable feedstock chemicals and are widely used in synthetic and medicinal chemistry.

6.
Chem Commun (Camb) ; 56(1): 109-112, 2019 Dec 17.
Article in English | MEDLINE | ID: mdl-31793563

ABSTRACT

A Ni-catalyzed Suzuki-type cross-coupling of boronic acids with epoxides without an exogenous base and with broad substrate scope has been developed. The product selectivity of styrenyl epoxides is different from that of previous work. This methodology uses readily available starting materials to access a range of substituted alcohols, which are valuable feedstock chemicals.

7.
Chem Commun (Camb) ; 55(74): 11123-11126, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31463500

ABSTRACT

A Pd-catalyzed decarboxylative cross-coupling of α,ß-unsaturated carboxylic acids with cyclic and acyclic epoxides has been developed. Both ß-monosubstituted and ß-disubstituted unsaturated carboxylic acids, as well as conjugated diene unsaturated carboxylic acids are suitable reaction substrates. Substituted homoallylic alcohols were obtained in moderate to good yields. The product was obtained as a mixture of diastereomers favoring the anti diastereomer of the cyclic epoxides. This work provides a method for the modification of complex organic molecules containing α,ß-unsaturated carboxylic acids.

SELECTION OF CITATIONS
SEARCH DETAIL