Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Ecotoxicol Environ Saf ; 279: 116459, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38763052

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR), one of the most common microvascular complications of diabetes mellitus (DM), is a major contributor of vision impairment and blindness worldwide. Studies have shown that air pollution exposure is adversely associated with DM. However, evidence is scarce regarding how air pollution exposure affects DR. This study aimed to investigate the association between ambient air pollution exposure and DR risk. METHODS: The study population was based on the Fujian Eye Study (FJES), an ophthalmologic, epidemiologic survey investigating the eye health condition of residents in Fujian Province from 2018 to 2019. Daily average concentrations of ambient air pollutants (PM2.5, PM10, SO2, NO2, and O3) were acquired from a high-resolution air quality dataset in China from 2013 to 2018. We used a logistic regression model to examine the associations between DR risk and long-term air pollution at various exposure windows. RESULTS: A total of 2405 out of the 8211 participants were diagnosed with diabetes, among whom 183 had DR. Ambient air pollution, especially particulate matter (i.e., PM2.5 and PM10) and NO2 were positively associated with DR prevalence among all the study subjects. Ambient SO2 and O3 concentrations were not associated with DR prevalence. PM2.5 and NO2 seemed to be borderline significantly associated with increased prevalence of DR in subjects with DM, especially under the model adjusted for sex, age, BMI, SBP, and DBP. CONCLUSIONS: These findings showed that long-term exposure to ambient particulate matter and NO2 was associated with a high DR risk in Fujian province, where ambient air pollution is relatively low.


Subject(s)
Air Pollutants , Air Pollution , Diabetic Retinopathy , Environmental Exposure , Particulate Matter , Humans , Diabetic Retinopathy/epidemiology , Male , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , China/epidemiology , Female , Middle Aged , Air Pollutants/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/adverse effects , Aged , Particulate Matter/analysis , Adult , Prevalence
2.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612408

ABSTRACT

Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of storage proteins in the endosperm, and also contributing to the formation of pollen. However, the role of PDI in root growth has not been previously studied. This research investigated the impact of PDI gene deficiency in plants by using 16F16 [2-(2-Chloroacetyl)-2,3,4,9-tetrahydro-1-methyl-1H-pyrido[3,4-b]indole-1-carboxylic acid methyl ester], a small-molecule inhibitor of PDI, to remove functional redundancy. The results showed that the growth of Arabidopsis roots was significantly inhibited when treated with 16F16. To further investigate the effects of 16F16 treatment, we conducted expression profiling of treated roots using RNA sequencing and a Tandem Mass Tag (TMT)-based quantitative proteomics approach at both the transcriptomic and proteomic levels. Our analysis revealed 994 differentially expressed genes (DEGs) at the transcript level, which were predominantly enriched in pathways associated with "phenylpropane biosynthesis", "plant hormone signal transduction", "plant-pathogen interaction" and "starch and sucrose metabolism" pathways. Additionally, we identified 120 differentially expressed proteins (DEPs) at the protein level. These proteins were mainly enriched in pathways such as "phenylpropanoid biosynthesis", "photosynthesis", "biosynthesis of various plant secondary metabolites", and "biosynthesis of secondary metabolites" pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network for root shortening in Arabidopsis seedlings under 16F16 treatment, mainly involving phenylpropane biosynthesis and plant hormone signal transduction pathways. This study enhances our understanding of the significant role of PDIs in Arabidopsis root growth and provides insights into the regulatory mechanisms of root shortening following 16F16 treatment.


Subject(s)
Arabidopsis , Indoles , Protein Disulfide-Isomerases , Protein Disulfide-Isomerases/genetics , Proteome/genetics , Transcriptome , Arabidopsis/genetics , Plant Growth Regulators/pharmacology , Proteomics , Carboxylic Acids
3.
Environ Health Perspect ; 132(4): 47012, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662525

ABSTRACT

BACKGROUND: Concurrent extreme events are projected to occur more frequently under a changing climate. Understanding the mortality risk and burden of the concurrent heatwaves and ozone (O3) pollution may support the formulation of adaptation strategies and early warning systems for concurrent events in the context of climate change. OBJECTIVES: We aimed to estimate the mortality risk and excess deaths of concurrent heatwaves and O3 pollution across 250 counties in China. METHODS: We collected daily mortality, meteorological, and air pollution data for the summer (1 June to 30 September) during 2013-2018. We defined heatwaves and high O3 pollution days, then we divided the identified days into three categories: a) days with only heatwaves (heatwave-only event), b) days with only high O3 pollution (high O3 pollution-only event), and c) days with concurrent heatwaves and high O3 pollution (concurrent event). A generalized linear model with a quasi-Poisson regression was used to estimate the risk of mortality associated with extreme events for each county. Then we conducted a random-effects meta-analysis to pool the county-specific estimates to derive the overall effect estimates. We used mixed-effects meta-regression to identify the drivers of the heterogeneity. Finally, we estimated the excess death attributable to extreme events (heatwave-only, high O3 pollution-only, and concurrent events) from 2013 to 2020. RESULTS: A higher all-cause mortality risk was associated with exposure to the concurrent heatwaves and high O3 pollution than exposure to a heatwave-only or a high O3 pollution-only event. The effects of a concurrent event on circulatory and respiratory mortality were higher than all-cause and nonaccidental mortality. Sex and age significantly impacted the association of concurrent events and heatwave-only events with all-cause mortality. We estimated that annual average excess deaths attributed to the concurrent events were 6,249 in China from 2017 to 2020, 5.7 times higher than the annual average excess deaths attributed to the concurrent events from 2013 to 2016. The annual average proportion of excess deaths attributed to the concurrent events in the total excess deaths caused by three types of events (heatwave-only events, high O3 pollution-only events, and concurrent events) increased significantly in 2017-2020 (31.50%; 95% CI: 26.73%, 35.53%) compared with 2013-2016 (9.65%; 95% CI: 5.67%, 10.81%). Relative excess risk due to interaction revealed positive additive interaction considering the concurrent effect of heatwaves and high O3 pollution. DISCUSSION: Our findings may provide scientific basis for establishing a concurrent event early warning system to reduce the adverse health impact of the concurrent heatwaves and high O3 pollution. https://doi.org/10.1289/EHP13790.


Subject(s)
Air Pollutants , Air Pollution , Extreme Heat , Ozone , Ozone/analysis , Ozone/adverse effects , China/epidemiology , Humans , Air Pollution/adverse effects , Air Pollution/statistics & numerical data , Air Pollutants/analysis , Air Pollutants/adverse effects , Extreme Heat/adverse effects , Female , Male , Mortality , Middle Aged , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Aged , Adult , Climate Change , Adolescent , Child , Young Adult , Child, Preschool , Infant , Seasons , Hot Temperature/adverse effects
4.
Physiol Plant ; 176(2): e14277, 2024.
Article in English | MEDLINE | ID: mdl-38566271

ABSTRACT

In order to maintain the dynamic physiological balance, plants are compelled to adjust their energy metabolism and signal transduction to cope with the abiotic stresses caused by complex and changeable environments. The diterpenoid natural compound and secondary metabolites, sclareol, derived from Salvia sclarea, has gained significant attention owing to its economic value as a spice material and diverse physiological activities. Here, we focused on the roles and regulatory mechanisms of the sclareol diterpene synthase gene SsdTPS in the resistance of S. sclarea to abiotic stresses. Our results suggested that abiotic stresses could induce the response and upregulation of SsdTPS expression and isoprenoid pathway in S. sclarea. Ectopic expression of SsdTPS conferred drought tolerance in transgenic Arabidopsis, compared with wild-type. Overexpression of SsdTPS enhanced the transcription of ABA signal transduction synthetic regulators and induced the positive feedback upregulating key regulatory genes in the MEP pathway, thereby promoting the increase of ABA content and improving drought tolerance in transgenic plants. In addition, SsdTPS-overexpressed transgenic Arabidopsis improved the responses of stomatal regulatory genes and ROS scavenging enzyme activities and gene expression to drought stress. This promoted the stomatal closure and ROS reduction, thus enhancing water retention capacity and reducing oxidative stress damage. These findings unveil the potentially positive role of SsdTPS in orchestrating multiple regulatory mechanisms and maintaining homeostasis for improved abiotic stress resistance in S. sclarea, providing a novel insight into strategies for promoting drought resistance and cultivating highly tolerant plants.


Subject(s)
Arabidopsis , Diterpenes , Arabidopsis/metabolism , Reactive Oxygen Species/metabolism , Droughts , Feedback , Plants, Genetically Modified/genetics , Stress, Physiological/genetics , Terpenes , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Abscisic Acid/pharmacology
5.
BMC Geriatr ; 24(1): 181, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395763

ABSTRACT

PURPOSE: Sarcopenia is a pathological change characterized by muscle loss in older people. According to the reports, there is controversy on the relationship between dyslipidemia and sarcopenia. Therefore, this meta-analysis aimed to explore the association between sarcopenia and dyslipidemia. METHODS: We searched the Cochrane Library, Web of Science, PubMed, China National Knowledge Infrastructure (CNKI), Wan Fang, China Science and Technology Journal Database (VIP Database) for case‒control studies to extract data on the odds ratio (OR) between sarcopenia and dyslipidemia and the MD(mean difference) of TC, LDL-C, HDL-C, TG, and TG/HDL-C between sarcopenia and nonsarcopenia. The JBI(Joanna Briggs) guidelines were used to evaluate the quality. Excel 2021, Review Manager 5.3 and Stata 16.0 were used for the statistical analysis. RESULTS: Twenty studies were included in the meta-analysis, 19 of which were evaluated as good quality. The overall OR of the relationship between sarcopenia and dyslipidemia was 1.47, and the MD values of TC, LDL-C, HDL-C, TG, and TG/HDL-C were 1.10, 1.95, 1.27, 30.13, and 0.16 respectively. In female, compared with the non-sarcopnia, the MD of TC, LDL-C, HDL-C, TG of sarcopenia were - 1.67,2.21,1.02,-3.18 respectively. In male, the MD of TC, LDL-C, HDL-C, TG between sarcopenia and non-sarcopenia were - 0.51, 1.41, 5.77, -0.67. The OR between sarcopenia and dyslipidemia of the non-China region was 4.38, and it was 0.9 in China. In the group(> 60), MD of TC between sarcopenia and non-sarcopenia was 2.63, while it was 1.54 in the group(20-60). CONCLUSION: Dyslipidemia was associated with sarcopenia in the elderly, which was affected by sex, region and age.


Subject(s)
Dyslipidemias , Sarcopenia , Humans , Male , Female , Aged , Cholesterol, LDL , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Sarcopenia/complications , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Dyslipidemias/complications , Case-Control Studies , China , Triglycerides
6.
Curr Environ Health Rep ; 11(2): 102-108, 2024 06.
Article in English | MEDLINE | ID: mdl-38351403

ABSTRACT

PURPOSE OF REVIEW: Through a systematic search of peer-reviewed epidemiologic studies, we reviewed the literature on the human health impacts of climate and ambient air pollution, focusing on recently published studies in China. Selected previous literature is discussed where relevant in tracing the origins. RECENT FINDINGS: Climate variables and air pollution have a complex interplay in affecting human health. The bulk of the literature we reviewed focuses on the air pollutants ozone and fine particulate matter and temperatures (including hot and cold extremes). The interaction between temperature and ozone presented substantial interaction, but evidence about the interactive effects of temperature with other air pollutants is inconsistent. Most included studies used a time-series design, usually with daily mean temperature and air pollutant concentration as independent variables. Still, more needs to be studied about the co-occurrence of climate and air pollution. The co-occurrence of extreme climate and air pollution events is likely to become an increasing health risk in China and many parts of the world as climate changes. Climate change can interact with air pollution exposure to amplify risks to human health. Challenges and opportunities to assess the combined effect of climate variables and air pollution on human health are discussed in this review. Implications from epidemiological studies for implementing coordinated measures and policies for addressing climate change and air pollution will be critical areas of future work.


Subject(s)
Air Pollutants , Air Pollution , Climate Change , Ozone , Particulate Matter , Humans , China , Air Pollution/adverse effects , Air Pollution/analysis , Particulate Matter/analysis , Particulate Matter/adverse effects , Air Pollutants/analysis , Air Pollutants/adverse effects , Ozone/adverse effects , Ozone/analysis , Environmental Exposure/adverse effects , Climate
7.
Nat Commun ; 14(1): 6867, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891159

ABSTRACT

Sand and Dust Storms (SDS) pose considerable health risks worldwide. Previous studies only indicated risk of SDS on overall mortality. This nationwide multicenter time-series study aimed to examine SDS-associated mortality risks extensively. We analyzed 1,495,724 deaths and 2024 SDS events from 1 February to 31 May (2013-2018) in 214 Chinese counties. The excess mortality risks associated with SDS were 7.49% (95% CI: 3.12-12.05%), 5.40% (1.25-9.73%), 4.05% (0.41-7.83%), 3.45% (0.34-6.66%), 3.37% (0.28-6.55%), 3.33% (0.07-6.70%), 8.90% (4.96-12.98%), 12.51% (6.31-19.08%), and 11.55% (5.55-17.89%) for ischemic stroke, intracerebral hemorrhagic stroke, hypertensive heart disease, myocardial infarction, acute myocardial infarction, acute ischemic heart disease, respiratory disease, chronic lower respiratory disease, and chronic obstructive pulmonary disease (COPD), respectively. SDS had significantly added effects on ischemic stroke, chronic lower respiratory disease, and COPD mortality. Our results suggest the need to implement public health policy against SDS.


Subject(s)
Ischemic Stroke , Myocardial Infarction , Pulmonary Disease, Chronic Obstructive , Stroke , Humans , Sand , China/epidemiology , Pulmonary Disease, Chronic Obstructive/epidemiology , Time Factors , Dust , Stroke/epidemiology
8.
Environ Sci Pollut Res Int ; 30(53): 113138-113150, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37851252

ABSTRACT

Although veterinary antibiotics are essential in preventing and treating clinical diseases in cattle, the frequent use of antibiotics leads to antibiotic residues in milk and dairy products, consequently threatening human health. The massive milk consumption makes it necessary to assess antibiotic pollution and health impact comprehensively. Hence, we conducted a systematic review to evaluate antibiotics in milk and dairy products and their potential health risk. We searched four databases using multiple keyword combinations to retrieve 1582 pieces of literature and finally included eighteen articles to analyze antibiotic residues in milk and dairy products. These studies detected seven antibiotics in different regions of China. Quinolones and ß-lactam antibiotics exceeded the MRL for raw and commercial milk. The maximum levels of sulfonamides and tetracyclines were detected in the same raw milk sample, exceeding the MRL. The estimated THQ and HI values in milk and dairy products are less than 1 for adults, indicating negligible noncarcinogenic health risk of antibiotics through consuming milk and dairy products. Children face higher health risks than adults, with the HI and THQ of quinolones exceeding 1. It is worth noting that quinolones accounted for nearly 89% of health risks associated with all antibiotics. Finally, we put forward possible research directions in the future, such as specific health effects of total dietary exposure to low levels of antibiotics. In addition, policymakers should effectively improve this problem from the perspectives of antibiotic use supervision, antibiotic residue analysis in food, and continuous environmental monitoring and control.


Subject(s)
Drug Residues , Quinolones , Adult , Child , Humans , Animals , Cattle , Milk/chemistry , Anti-Bacterial Agents/analysis , Dairy Products/analysis , Sulfanilamide/analysis , Quinolones/analysis , China , Drug Residues/analysis
9.
J Agric Food Chem ; 71(33): 12372-12389, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37565661

ABSTRACT

Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.


Subject(s)
Pesticides , Humans , Pesticides/chemistry , Stereoisomerism , Chromatography, High Pressure Liquid , Food
10.
Vet Sci ; 10(7)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37505857

ABSTRACT

The fibroblast growth factor 21 (FGF21) gene plays an important role in the mechanism of glucose and lipid metabolism and is a promising therapeutic target for metabolic disease. Camels display a unique regulation characteristic of glucose and lipid metabolism, endowing them with the ability to adapt to survive drought and chronic hunger. However, the knowledge about the camel FGF21 gene regulation and its differences between humans and mice is still limited. In this study, camel FGF21 gene promoter was obtained for ~2000 bp upstream of the transcriptional start site (TSS). Bioinformatics analysis showed that the proximal promoter region sequences near the TSS between humans and camels have high similarity. Two potential core active regions are located in the -445-612 bp region. In addition, camel FGF21 promoter contains three CpG islands (CGIs), located in the -435~-1168 bp regions, significantly more and longer than in humans and mice. The transcription factor binding prediction showed that most transcription factors, including major functional transcription factors, are the same in different species although the binding site positions in the promoter are different. These results indicated that the signaling pathways involved in FGF21 gene transcription regulation are conservative in mammals. Truncated fragments recombinant vectors and luciferase reporter assay determined that camel FGF21 core promoter is located within the 800 bp region upstream of the TSS and an enhancer may exist between the -1000 and -2000 bp region. Combining molecular docking and in silico ADMET druggability prediction, two compounds were screened as the most promising candidate drugs specifically targeting FGF21. This study expanded the functions of these small molecules and provided a foundation for drug development targeting FGF21.

11.
Sci Total Environ ; 894: 164528, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37268147

ABSTRACT

Fine particles (PM2.5) are implicated as an important risk to cardiovascular health. N95 respirators had been widely used to provide protection by filtering particles. Yet the practical effects of wearing respirators have not been fully understood. This study aimed to evaluate the cardiovascular effects of respirator wearing against PM2.5 and underpin the understanding of the mechanisms of cardiovascular responses triggered by PM2.5. We conducted a randomized, double-blind crossover trial among 52 healthy adults in Beijing, China. Participants were exposed to outdoor PM2.5 for 2 h in alterations wearing true respirators (with membranes) or sham ones (without membranes). We measured ambient PM2.5 and tested the filtration efficiency of the respirators. We compared the heart rate variability (HRV), blood pressure and arterial stiffness indicators between the true respirator group and the sham respirator group. Concentrations of ambient PM2.5 during the 2-h exposure ranged from 4.9 to 255.0 µg/m3. The filtration efficiency of true respirators was 90.1 % and that of sham ones was 18.7 %. Between-group differences varied by pollution levels. On less polluted days (PM2.5< 75 µg/m3), participants wearing true respirators showed lower levels of HRV and higher levels of heart rate compared with those wearing sham respirators. These between-group differences were inconspicuous on heavily polluted days (PM2.5≥ 75 µg/m3). We found that a 10 µg/m3 increase in PM2.5 was associated with a 2.2 % to 6.4 % decrease in HRV, prominent at 1 h after the start of exposure. N95 respirators have good performance in reducing PM2.5 exposure. Short-term exposure to PM2.5 can induce very acute responses in autonomic nervous function. However, the overall effects of wearing respirators might be not always favorable to human health in terms of their inherent adverse effects, which seem dependent on the levels of air pollution. Precise individual protection recommendations warrant to be developed.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular System , Adult , Humans , Particulate Matter/adverse effects , Particulate Matter/analysis , Cross-Over Studies , Air Pollution/analysis , Blood Pressure , Air Pollutants/adverse effects , Air Pollutants/analysis
12.
Life (Basel) ; 13(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37374120

ABSTRACT

Immortalized cell lines with many advantages are widely used in various experimental contexts by many different labs. However, the absence of available cell lines poses difficulties for research in some species, such as camels. To establish an immortalized Bactrian camel fibroblast (iBCF) cell line and understand its biological characteristics, primary fibroblast cells from Bactrian camels were isolated and purified using enzymatic digestion in this study, and telomerase reverse transcriptase (hTERT) vectors were introduced into primary BCF (pBCF) for continuous passage to 80 generations after screening with G418. The cell morphology of different generations was examined under a microscope. Cell cycle and viability were evaluated by flow cytometry and CCK-8 assay, respectively. Cellular genes expression was monitored by qPCR, immunofluorescence, and Western blot, respectively. Chromosomes were determined by karyotyping. The results showed that like most other cells, both pBCF and iBCF were sensitive to nutrient concentrations and adapted to culture in the medium with 4.5 g/L glucose and 10% fetal bovine serum (FBS) concentration. hTERT gene was introduced and stably expressed in iBCF cells, which promoted BCF cell immortalization. The fibroblast specific marker vimentin (VIM) is expressed in both pBCF and iBCF, but epithelial marker cytokeratin18 (CK18) expression is weak in BCF cells. Proliferation and viability detection showed that hTERT-induced iBCF exhibits faster growth rates and higher viability than pBCF. Karyotyping showed that iBCF maintained the same number and morphology of chromosomes as the pBCF. This study demonstrated that we have successfully constructed an immortalized Bactrian camel fibroblast cell line, which was named BCF23. The establishment of the BCF23 cell line provides a foundation for expanding camel-related research.

13.
China CDC Wkly ; 5(6): 119-124, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-37008829

ABSTRACT

What is already known about this topic?: Tropical cyclone (TC) has a substantial and adverse impact on non-accidental mortality. However, whether heterogeneity exists when examining deaths from sub-causes and how TC impacts non-accidental mortality in the short term remain unclear. What is added by this report?: This study found substantial associations at lag 0 between TC exposure and circulatory and respiratory mortality. TC exposures were associated with increased risks for several mortality sub-causes at lag 0 day, including ischemic heart disease, myocardial infarction, cardiac arrest, cerebrovascular disease, stroke, chronic obstructive pulmonary disease, and Parkinson's disease. What are the implications for public health practice?: This finding suggests an urgent need to expand the public health focus of natural disaster management to include non-accidental mortality and sub-causes.

14.
Anal Chem ; 95(15): 6227-6234, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37027009

ABSTRACT

Bisphenol chemicals (BPs) represent a complexity of halogenated and nonhalogenated substances sharing a common structure of two phenol functionalities, some of which exhibit ubiquitous environmental distributions and endocrine-disrupting activities. However, environmental monitoring of complex BP-like chemicals has faced analytical challenges arising from the lack of commercially available reference standards and efficient screening strategies. In the present study, we developed a strategy based on dansyl chloride (DnsCl) derivatization in combination with in-source fragmentation (D-ISF) during high-resolution mass spectrometry analysis to screen for bisphenol chemicals in complex environmental samples. The strategy contains three steps, including DnsCl derivatization to enhance the detection sensitivity by one to more than four orders of magnitude, in-source fragmentation to produce characteristic loss of 234.0589, 63.9619, and 298.0208 Da for the identification of DnsCl-derivatized compounds, and data processing and annotation. The D-ISF strategy was further validated and then applied to identify BPs in six types of particular matters as representative environmental samples, including settled dust from an electronic waste dismantling site, homes, offices, and vehicles, and airborne particles from indoor and outdoor environments. A total of six halogenated and fourteen nonhalogenated BPs were identified in the particles, including several chemicals that had rarely or never been identified in environmental samples. Our strategy offers a powerful tool for the environmental monitoring of bisphenol chemicals and assessment of human exposure risks.


Subject(s)
Environmental Monitoring , Phenols , Humans , Environmental Monitoring/methods , Mass Spectrometry , Dansyl Compounds , Phenols/analysis , Benzhydryl Compounds/analysis
15.
Vet Microbiol ; 280: 109725, 2023 May.
Article in English | MEDLINE | ID: mdl-36996618

ABSTRACT

Foot-and-mouth disease (FMD) severely impacts cloven-hoofed live-stock production, leading to serious economic losses and international restriction on the trade of animals and animal products worldwide. MiRNAs serve key roles in viral immunity and regulation. However, the knowledge about miRNAs regulation in FMDV infection is still limited. In this study, we found that FMDV infection caused rapid cytopathic in PK-15 cell. To investigate the miRNAs' function in FMDV infection, we performed knockdown of endogenous Dgcr8 using its specific siRNA and found that interference of Dgcr8 inhibited cellular miRNA expression and increased FMDV production, including viral capsid proteins expression, viral genome copies and virus titer, suggesting that miRNAs play an important role in FMDV infection. To obtain a full perspective on miRNA expression profiling after FMDV infection, we performed miRNA sequencing and found that FMDV infection caused inhibition of miRNA expression in PK-15 cells. Together with the target prediction result, miR-34a and miR-361 were screened for further study. Function study showed that no matter plasmid or mimics-mediated overexpression of miR-34a and miR-361 both suppressed FMDV replication, while inhibition of endogenous miR-34a and miR-361 expression using specific inhibitors significantly increased FMDV replication. Further study showed that miR-34a and miR-361 stimulated IFN-ß promoter activity and activated interferon-stimulated response element (ISRE). In addition, ELISA test found that miR-361 and miR-34a increased secretion level of IFN-ß and IFN-γ, which may contribute to repression of FMDV replication. This study preliminary revealed that miR-361 and miR-34a inhibited FMDV proliferation via stimulating immune response.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , MicroRNAs , Animals , Foot-and-Mouth Disease Virus/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Foot-and-Mouth Disease/genetics , Immunity , Cell Proliferation , Virus Replication
16.
Life (Basel) ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836789

ABSTRACT

With the ability to survive under drought and chronic hunger, camels display a unique regulation characteristic of lipid metabolism. Fibroblast growth factor (FGF) 21 is a peptide hormone that regulates metabolic pathways, especially lipid metabolism, which was considered as a promising therapeutic target for metabolic diseases. To understand the FGF21 expression pattern and its potential relationship with lipid metabolism in camels, this study investigated the distribution and expression of FGF21, receptor FGFR1, and two lipid metabolism markers, leptin and hormone-sensitive lipase (HSL), using an immunohistochemistry (IHC) assay. The results showed that FGF21 was widely expressed in camel central nerve tissue and peripheral organs but absent in lung and gametogenic tissue, including the testis, epididymis, and ovary. In striated muscle, FGF21 is only present at the fiber junction. FGFR1 is expressed in almost all tissues and cells, indicating that all tissues are responsive to FGF21 and other FGF-mediated signals. Leptin and HSL are mainly located in metabolic and energy-consuming organs. In the CNS, leptin and HSL showed a similar expression pattern with FGFR1. In addition, leptin expression is extremely high in the bronchial epithelium, which may be due to its role in the immune responses of respiratory mucosa, in addition to fat stores and energy balance. This study found that FGF21 showed active expression in the nervous system of camels, which may be related to the adaptability of camels to arid environments and the specific regulation of lipid metabolism. This study showed a special FGF21-mediated fat conversion pattern in camels and provides a reference for developing a potential therapeutic method for fat metabolism disease.

17.
Environ Int ; 172: 107767, 2023 02.
Article in English | MEDLINE | ID: mdl-36716635

ABSTRACT

Climate change has made disastrous heatwaves more frequent. Heatwave-related health impacts are much more devastating for more intense heatwaves. In the summer of 2017, exceptional heatwaves occurred in many regions, including China. This study aims to evaluate the cardiovascular mortality risk associated with the 2017 exceptional heatwaves and compare the mortality risk of the severe heatwaves with those in other years. Using daily data for a spectrum of cardiovascular mortality and temperature for 102 Chinese counties (2014-2017), we estimated the association between heatwave and mortality by generalized linear mixed-effects models. Compared with matched non-heatwave days, mortality risks on heatwaves days in 2017 increased 27.8% (95% CI, 14.8-42.3%), 26.7% (8.0-48.5%), 30.1% (10.2-53.7%), 27.3% (1.4-59.9%), 32.2% (3.4-68.4%), and 25.2% (1.0-57.7%) for total circulatory diseases, cerebrovascular disease, ischemic heart disease (IHD), acute IHD, chronic IHD, and myocardial infarction. The 2017 exceptional heatwaves impacted ischemic heart disease mortality and myocardial infarction mortality more than heatwaves in 2014-2016. Here we show that the severe heatwaves in 2017 posed catastrophic death threats for those under-studied cardiovascular diseases.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Humans , Temperature , Seasons , China/epidemiology , Hot Temperature , Mortality
18.
Sci Total Environ ; 851(Pt 1): 158161, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988597

ABSTRACT

Previous studies have indicated that heavy metal levels in milk vary partly depending on environmental metal concentrations. Given the increasing consumption of milk in China, it is essential to pay attention to milk safety. We performed a systematic review of relevant published studies to evaluate the heavy metal levels in milk and dairy products and the associated health risks, discuss environmental sources of heavy metals, and propose future research directions. A literature search was implemented in the Web of Science Core Collection and PubMed using multiple keywords such as "metal," "milk," "dairy products," and "China". A total of 16 published studies that analyzed metal levels in milk and dairy products in 20 provincial administrative regions were included. Most studies detected toxic heavy metals in milk and dairy products samples, including mercury, lead, cadmium, chromium, and arsenic. The lead concentration in milk from these studies did not exceed the Chinese standard for milk. However, three studies detected relatively high lead levels in both commercial and raw milk, exceeding the European Commission standard. The polluted environment surrounding the farm, feed, and packaging materials are likely sources of metals in milk and dairy products. The hazard index for the 11 analyzed metal elements in milk and dairy products was lower than 1, indicating negligible non-carcinogenic health risks from exposure to these metals. Children are at a higher risk than adults. This review illustrates that research in this field is limited to China. More research should be conducted in the future, such as evaluating the contribution of each environmental source of metal in milk and dairy products.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Adult , Animals , Arsenic/analysis , Cadmium/analysis , Child , Chromium/analysis , Environmental Monitoring , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Milk/chemistry , Risk Assessment
19.
Ecotoxicol Environ Saf ; 241: 113727, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35679731

ABSTRACT

BACKGROUND: Gestational hypertension (GH), preeclampsia (PE), and gestational diabetes mellitus (GDM) are common pregnancy complications and can result in maternal and prenatal morbidity and mortality. Air pollution exposure could adversely impact pregnancy complications; however, evidence remains limited in China, where ambient air pollution is relatively severe. OBJECTIVE: This study aims to examine the associations of GH, PE, and GDM with exposure to six air pollutants (PM2.5, PM10, SO2, NO2, O3, and CO) during pregnancy. METHODS: Leveraging a multicenter birth cohort study among pregnant women in 24 hospitals from 15 provinces in China, we obtained data for maternal characteristics and pregnancy outcomes. We generated ambient concentrations of the six air pollutants using a combination of chemical transport model simulations with monitoring data. We used multivariable logistic regression models to estimate the effects on pregnancy complications from exposure to six air pollutants in each trimester and the entire pregnancy. RESULTS: Among the total 3754 pregnant women in this study, the prevalences of GH, GDM, and PE were 2.6 %, 11.2 %, and 0.7 %, respectively. GH risk increased 11.9 % (95 % CI, -8.5 %, 36.8 %) and 13.8 % (1.4 %, 27.8 %) per 10 µg/m3 increases in PM2.5 and PM10 in the entire pregnancy, respectively. PM2.5 and PM10 exposures in the first trimester were significantly associated with an increased risk of GDM. Exposure to O3, SO2, NO2, and CO in early pregnancy could be associated with GDM risk. Geographic region and season of conception may influence the associations of GH and PE with air pollution. CONCLUSIONS: Ambient particulate matter pollution adversely affects GH, GDM, and PE among Chinese pregnant women. Since most regions of China still suffer from hazardous levels of air pollution, our findings indicate importance of better protecting pregnant women from the risk of air pollution.


Subject(s)
Air Pollutants , Air Pollution , Diabetes, Gestational , Hypertension, Pregnancy-Induced , Pregnancy Complications , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , China/epidemiology , Cohort Studies , Diabetes, Gestational/chemically induced , Diabetes, Gestational/epidemiology , Female , Humans , Hypertension, Pregnancy-Induced/chemically induced , Hypertension, Pregnancy-Induced/epidemiology , Maternal Exposure/adverse effects , Nitrogen Dioxide/analysis , Particulate Matter/toxicity , Pregnancy , Pregnancy Complications/chemically induced
20.
Sci Total Environ ; 836: 155571, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35490824

ABSTRACT

As one of the largest carbon emitters, China promises to achieve carbon emissions neutrality by 2060. Various industries are developing businesses to reduce carbon emissions. As an important greenhouse gas emissions scenario, the reduction of carbon emissions in the food chain can be achieved by preparing the wastes into biochar. The food chain, as one of the sources of biochar, consists of production, processing and consumption, in which many wastes can be transferred into biochar. However, few studies use the food chain as the system to sort out the raw materials of biochar. A systematic review of the food chain application in serving as raw materials for biochar is helpful for further application of such technique, providing supportive information for the development of biochar preparation and wastes treating. In addition, there are many pollution sources in the food production process, such as agricultural contaminated soil and wastewater from livestock and aquatic, that can be treated on-site to achieve the goal of treating wastes with wastes within the food chain. This study focuses on waste resource utilization and pollution remediation in the food chain, summarizing the sources of biochar in the food chain and analyzing the feasibility of using waste in food chain to treat contaminated sites in the food chain and discussing the impacts of the greenhouse gas emissions. This review provides a reference for the resource utilization of waste and pollution reduction in the food chain.


Subject(s)
Greenhouse Gases , Agriculture , Carbon , Charcoal , Food Chain , Nitrous Oxide/analysis , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...