Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.227
Filter
1.
J Med Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718180

ABSTRACT

Faced with increasingly serious fungal infections and drug resistance issues, three different series of novel dual-target (programmed death ligand 1/14 α-demethylase) compounds were constructed through the fragment combination pathway in the study. Their chemical structures were synthesized, characterized, and evaluated. Among them, preferred compounds 10c-1, 17b-1, and 18b-2 could efficiently exert their antifungal and antidrug-resistant fungal ability through blocking ergosterol biosynthesis, inducing the upregulation of reactive oxygen species level, and triggering apoptosis. Especially, compound 18b-2 exhibited the synergistic function of fungal inhibition and immune activation. Moreover, the covalent organic framework carrier was also generated based on the acidic microenvironment of fungal infection to improve the bioavailability and targeting of preferred compounds; this finally accelerated the body's recovery rate.

3.
Front Pharmacol ; 15: 1361953, 2024.
Article in English | MEDLINE | ID: mdl-38698824

ABSTRACT

Background: For cesarean delivery (CD), the 90% effective dosage (ED90) of oxytocin for a first bolus has been established. It is not yet known how much oxytocin to inject into obese women undergoing elective discectomy to keep their uterine tone (UT) appropriate. We hypothesized that patients who are overweight need a greater dose of oxytocin infusion; thus, we aimed to determine how the dose-response curve for oxytocin infusion changes following an initial 1 international unit (IU) bolus in obese women undergoing elective CD. Methods: One hundred parturients with a body mass index (BMI) greater than 30 kg/m2 were randomly assigned to receive an infusion rate of 14, 18, 22, or 26 IU/h of oxytocin. When the uterine palpation is as hard as touching the forehead or tip of the nose, it is considered sufficient UT according to the criteria used by obstetricians. The median effective dose (ED50) and ED90 values were determined using probit analysis. Results: We found the ED50 and ED90 values for the infusion dose of oxytocin were around 11.0 IU/h and 19.1 IU/h, respectively. Each group had a different number of parturients who needed rescued oxytocin: 14 IU/h for six, 18 IU/h for three, one for 22 IU/h, and none for 26 IU/h. The correlation between the frequency of rescued oxytocin administration and the amount of oxytocin infusion needed to avoid uterine atony was statistically significant (p = 0.02). Conclusion: The present research showed that the most effective dosage of oxytocin infusion for obese parturients undergoing elective CD is 19.1 IU/h, following an initial loading dose of 1 IU. Patients with obesity should receive a greater dosage of prophylactic oxytocin, and further studies comparing patients with and without obesity (with higher BMI) are required. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=159951, identifier ChiCTR2200059582.

4.
Theranostics ; 14(6): 2622-2636, 2024.
Article in English | MEDLINE | ID: mdl-38646657

ABSTRACT

Rationale: In recent years, nicotinamide adenine dinucleotide (NAD+) precursors (Npre) have been widely employed to ameliorate female reproductive problems in both humans and animal models. However, whether and how Npre plays a role in the male reproductive disorder has not been fully clarified. Methods: In the present study, a busulfan-induced non-obstructive azoospermic mouse model was used, and Npre was administered for five weeks following the drug injection, with the objective of reinstating spermatogenesis and fertility. Initially, we assessed the NAD+ level, germ cell types, semen parameters and sperm fertilization capability. Subsequently, testis tissues were examined through RNA sequencing analysis, ELISA, H&E, immunofluorescence, quantitative real-time PCR, and Western blotting techniques. Results: The results indicated that Npre restored normal level of NAD+ in blood and significantly alleviated the deleterious effects of busulfan (BU) on spermatogenesis, thereby partially reestablishing fertilization capacity. Transcriptome analysis, along with recovery of testicular Fe2+, GSH, NADPH, and MDA levels, impaired by BU, and the fact that Fer-1, an inhibitor of ferroptosis, restored spermatogenesis and semen parameters close to CTRL values, supported such possibility. Interestingly, the reduction in SIRT2 protein level by the specific inhibitor AGK2 attenuated the beneficial effects of Npre on spermatogenesis and ferroptosis by affecting PGC-1α and ACLY protein levels, thus suggesting how these compounds might confer spermatogenesis protection. Conclusion: Collectively, these findings indicate that NAD+ protects spermatogenesis against ferroptosis, probably through SIRT2 dependent mechanisms. This underscores the considerable potential of Npre supplementation as a feasible strategy for preserving or restoring spermatogenesis in specific conditions of male infertility and as adjuvant therapy to preserve male fertility in cancer patients receiving sterilizing treatments.


Subject(s)
Busulfan , Ferroptosis , NAD , Sirtuin 2 , Spermatogenesis , Animals , Busulfan/pharmacology , Male , Spermatogenesis/drug effects , Mice , NAD/metabolism , Ferroptosis/drug effects , Sirtuin 2/metabolism , Sirtuin 2/genetics , Disease Models, Animal , Testis/metabolism , Testis/drug effects , Azoospermia/drug therapy , Azoospermia/metabolism , Azoospermia/chemically induced
5.
Adv Sci (Weinh) ; : e2309517, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647405

ABSTRACT

Intravenous thrombolysis with recombinant tissue plasminogen activator (rtPA) is the primary treatment for ischemic stroke. However, rtPA treatment can substantially increase blood-brain barrier (BBB) permeability and susceptibility to hemorrhagic transformation. Herein, the mechanism underlying the side effects of rtPA treatment is investigated and demonstrated that ferroptosis plays an important role. The ferroptosis inhibitor, liproxstatin-1 (Lip) is proposed to alleviate the side effects. A well-designed macrocyclic carrier, glucose-modified azocalix[4]arene (GluAC4A), is prepared to deliver Lip to the ischemic site. GluAC4A bound tightly to Lip and markedly improved its solubility. Glucose, modified at the upper rim of GluAC4A, imparts BBB targeting to the drug delivery system owing to the presence of glucose transporter 1 on the BBB surface. The responsiveness of GluAC4A to hypoxia due to the presence of azo groups enabled the targeted release of Lip at the ischemic site. GluAC4A successfully improved drug accumulation in the brain, and Lip@GluAC4A significantly reduced ferroptosis, BBB leakage, and neurological deficits induced by rtPA in vivo. These findings deepen the understanding of the side effects of rtPA treatment and provide a novel strategy for their effective mitigation, which is of great significance for the treatment and prognosis of patients with ischemic stroke.

6.
Brain Sci ; 14(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38671952

ABSTRACT

Parkinson's disease (PD) is characterized not only by motor symptoms but also by non-motor dysfunctions, such as olfactory impairment; the cause is not fully understood. Our study suggests that neuronal loss and inflammation in brain regions along the olfactory pathway, such as the olfactory bulb (OB) and the piriform cortex (PC), may contribute to olfactory dysfunction in PD mice, which might be related to the downregulation of the trace amine-associated receptor 1 (TAAR1) in these areas. In the striatum, although only a decrease in mRNA level, but not in protein level, of TAAR1 was detected, bioinformatic analyses substantiated its correlation with PD. Moreover, we discovered that neuronal death and inflammation in the OB and the PC in PD mice might be regulated by TAAR through the Bcl-2/caspase3 pathway. This manifested as a decrease of anti-apoptotic protein Bcl-2 and an increase of the pro-apoptotic protein cleaved caspase3, or through regulating astrocytes activity, manifested as the increase of TAAR1 in astrocytes, which might lead to the decreased clearance of glutamate and consequent neurotoxicity. In summary, we have identified a possible mechanism to elucidate the olfactory dysfunction in PD, positing neuronal damage and inflammation due to apoptosis and astrocyte activity along the olfactory pathway in conjunction with the downregulation of TAAR1.

7.
Natl Sci Rev ; 11(4): nwae082, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38686177

ABSTRACT

The nucleus of Darkschewitsch (ND), mainly composed of GABAergic neurons, is widely recognized as a component of the eye-movement controlling system. However, the functional contribution of ND GABAergic neurons (NDGABA) in animal behavior is largely unknown. Here, we show that NDGABA neurons were selectively activated by different types of fear stimuli, such as predator odor and foot shock. Optogenetic and chemogenetic manipulations revealed that NDGABA neurons mediate freezing behavior. Moreover, using circuit-based optogenetic and neuroanatomical tracing methods, we identified an excitatory pathway from the lateral periaqueductal gray (lPAG) to the ND that induces freezing by exciting ND inhibitory outputs to the motor-related gigantocellular reticular nucleus, ventral part (GiV). Together, these findings indicate the NDGABA population as a novel hub for controlling defensive response by relaying fearful information from the lPAG to GiV, a mechanism critical for understanding how the freezing behavior is encoded in the mammalian brain.

8.
Molecules ; 29(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675536

ABSTRACT

Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.


Subject(s)
Constipation , Morus , Plant Leaves , Sesamum , Morus/chemistry , Constipation/drug therapy , Plant Leaves/chemistry , Sesamum/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Male , Gastrointestinal Motility/drug effects , Gastrointestinal Transit/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Gene Expression Profiling , Disease Models, Animal , Multiomics
9.
Appl Environ Microbiol ; : e0004624, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563787

ABSTRACT

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.

10.
Purinergic Signal ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489005

ABSTRACT

Berberine (BBR) is a Chinese herb with antioxidant and anti-inflammatory properties. In a previous study, we found that BBR had a protective effect against light-induced retinal degeneration in BALB/c mice. The purinergic P2X7 receptor (P2X7R) plays a key role in retinal degeneration via inducing oxidative stress, inflammatory changes, and cell death. The aim of this study was to investigate whether BBR can induce protective effects in light damage experiments and whether P2X7R can get involved in these effects. C57BL/6 J mice and P2X7 knockout (KO) mice on the C57BL/6 J background were used. We found that BBR preserved the outer nuclear layer (ONL) thickness and retinal ganglion cells following light stimulation. Furthermore, BBR significantly suppressed photoreceptor apoptosis, pro-apoptotic c-fos expression, pro-inflammatory responses of Mϋller cells, and inflammatory factors (TNF-α, IL-1ß). In addition, protein levels of P2X7R were downregulated in BBR-treated mice. Double immunofluorescence showed that BBR reduced overexpression of P2X7R in retinal ganglion cells and Mϋller cells. Furthermore, BBR combined with the P2X7R agonist BzATP blocked the effects of BBR on retinal morphology and photoreceptor apoptosis. However, in P2X7 KO mice, BBR had an additive effect resulting in thicker ONL and more photoreceptors. The data suggest that the P2X7 receptor is involved in retinal light damage, and BBR inhibits this process by reducing histological impairment, cell death, and inflammatory responses.

11.
J Multidiscip Healthc ; 17: 1231-1240, 2024.
Article in English | MEDLINE | ID: mdl-38524862

ABSTRACT

Objective: Tuberculosis (TB) is a major public health problem that affects millions of people worldwide. Malnutrition is a common complication of TB and can worsen the disease outcome. The purpose of this study was to investigate the dietary and nutritional status, as well as the dietary structure, of TB patients in Hulunbuir City, Inner Mongolia, China. Additionally, the study aimed to analyze the factors that influence the nutritional status in order to provide a theoretical foundation for the prevention and treatment of TB and related issues. Methods: A cross-sectional study was conducted on 334 randomly selected TB patients from Hulunbuir City Second Hospital. A questionnaire survey was administered to collect information on demographic characteristics, dietary habits, and food intake. Nutritional status was assessed by body mass index (BMI). Dietary diversity score (DDS) was calculated based on the number of food groups consumed in the previous 24 hours. Statistical analysis was performed using SPSS 20.0 software. Descriptive statistics employed rates and composition ratios, and categorical data was represented using frequencies and percentages. The chi-square test was used to analyze the association between nutritional status and other variables, with a significance level set at α=0.05. Multivariable ordinal logistic regression analysis was performed to identify the independent factors affecting the nutritional status of TB patients. Results: The univariate analysis revealed statistically significant differences (P < 0.05) in the nutritional status (as measured by BMI) among tuberculosis patients, considering ethnicity, educational level, smoking, meat-based diet, vegetable consumption, and DDS grading. No statistically significant differences were found regarding gender, age, marital status, occupation, sleep duration, alcohol consumption, and consumption of rice and flour dishes. Statistically significant variables from the univariate analysis were included in a multivariable ordinal logistic regression analysis model. The findings highlighted that educational level (high school or below), smoking, meat-based diet, DDS scores of 1-3, and a primarily vegetable-based diet had independent effects on the nutritional status of tuberculosis patients (all P < 0.05). No significant difference was found in nutritional status between the Han ethnic group and other ethnicities. Conclusion: The study revealed that the dietary and nutritional status of TB patients in Hulunbuir City was suboptimal and influenced by several factors. Smoking, meat-based diet, and low dietary diversity score were the primary risk factors for malnutrition among TB patients. The study suggests that nutritional education and intervention programs should be implemented for TB patients to improve their dietary quality and nutritional status.

12.
Immunol Invest ; 53(3): 464-474, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38477623

ABSTRACT

This study was designed to investigate the correlation of neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), and interleukin (IL)-37/IL-17 ratio with the incidence/treatment of rheumatoid arthritis (RA). Firstly, fifty-eight patients with RA treated at the first affiliated hospital of Xinjiang Medical University from January 2018 to January 2019 were selected as the RA group; forty-nine healthy volunteers were enrolled in the control group. RA patients were treated with disease-modifying anti-rheumatic drugs (DMARDs). Next, the NLR, PLR, IL-37, IL-17 and 28-joint disease activity score using erythrocyte sedimentation rate (DAS28-ESR) were deleted in two groups. Subsequently, Spearman correlation analysis was adopted for the correlations of various indicators before and after treatment in two groups. According to the analysis results, the levels of NLR, PLR, IL-37, and IL-17 before treatment in the RA group were higher than those in the control group (P < .05), but the difference in the IL-37/IL-17 level between the two groups was not significant (P > .05). After treatment, NLR, PLR, and IL-37/IL-17 levels were significantly reduced in RA patients (P < .05). NLR and PLR were significantly positively correlated with DAS28-ESR, ESR and C-reactive protein (CRP), of which represented the disease activity of RA. NLP was strongly correlated with IL-37/IL-17. Collectively, NLR, PLR, IL-37, and IL-17 are closely related to the occurrence of RA. In addition, NLR and IL-37/IL-17 are more suitable than PLR in reflecting the therapeutic effect. Therefore, IL-37/IL-17 can be considered as a new indicator for reflecting the treatment effectiveness of RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Interleukin-17/metabolism , Neutrophils , Lymphocytes/metabolism , Blood Platelets/chemistry , Antirheumatic Agents/therapeutic use , C-Reactive Protein/metabolism , Retrospective Studies
13.
Biochem Pharmacol ; 223: 116122, 2024 May.
Article in English | MEDLINE | ID: mdl-38467377

ABSTRACT

Cutaneous melanoma is the deadliest form of skin cancer, and its incidence is continuing to increase worldwide in the last decades. Traditional therapies for melanoma can easily cause drug resistance, thus the treatment of melanoma remains a challenge. Various studies have focused on reversing the drug resistance. As tumors grow and progress, cancer cells face a constantly changing microenvironment made up of different nutrients, metabolites, and cell types. Multiple studies have shown that metabolic reprogramming of cancer is not static, but a highly dynamic process. There is a growing interest in exploring the relationship between melanoma andmetabolic reprogramming, one of which may belipid metabolism. This review frames the recent research progresses on lipid metabolism in melanoma.In addition, we emphasize the dynamic ability of metabolism during tumorigenesis as a target for improving response to different therapies and for overcoming drug resistance in melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Skin Neoplasms/metabolism , Lipid Metabolism , Metabolic Reprogramming , Drug Resistance , Lipids , Tumor Microenvironment
14.
PLoS Pathog ; 20(3): e1012082, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38470932

ABSTRACT

Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.


Subject(s)
Ferroptosis , Herpesvirus 8, Human , Neoplasms , Sarcoma, Kaposi , Sirtuin 3 , Rats , Animals , Herpesvirus 8, Human/genetics , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cell Transformation, Neoplastic , Viral Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Brain Sci ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38539626

ABSTRACT

Increasing evidence suggests that the gut microbiota may represent potential strategies for Parkinson's disease (PD) treatment. Our previous research revealed a decreased abundance of Akkermansia muciniphila (Akk) in PD mice; however, whether Akk is beneficial to PD is unknown. To answer this question, the mice received MPTP intraperitoneally to construct a subacute model of PD and were then supplemented with Akk orally for 21 consecutive days. Motor function, dopaminergic neurons, neuroinflammation, and neurogenesis were examined. In addition, intestinal inflammation, and serum and fecal short-chain fatty acids (SCFAs) analyses, were assessed. We found that Akk treatment effectively inhibited the reduction of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and partially improved the motor function in PD mice. Additionally, Akk markedly alleviated neuroinflammation in the striatum and hippocampus and promoted hippocampal neurogenesis. It also decreased the level of colon inflammation. Furthermore, these aforementioned changes are mainly accompanied by alterations in serum and fecal isovaleric acid levels, and lower intestinal permeability. Our research strongly suggests that Akk is a potential neuroprotective agent for PD therapy.

16.
Huan Jing Ke Xue ; 45(3): 1265-1273, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471843

ABSTRACT

To quantitatively evaluate the co-benefits of air pollution reduction and carbon dioxide reduction of Taiyuan's 14th Five-Year Plan air pollution prevention and control policies, this study used the Beijing-Tianjin-Hebei Greenhouse Gas-Air Pollution Interaction and Synergy Model (GAINS-JJJ) to simulate and evaluate the emission reduction potential and CO2 co-benefit of 13 air pollution control measures. The emission reductions of PM2.5, PM10, SO2, NOx, VOCs, and NH3 in 2025 were 1.8 (5%, compared with that in the baseline scenario), 2.5 (2%), 3.7 (16%), 20.0 (27%), 13.6 (15%), and 0.0 kt (0%), respectively. The reduction in CO2 emissions was 9.0 Mt (13%), whereas CH4 emissions increased by 203.3 kt (25% increase relative to that in the baseline scenario). SO2, NOx, and VOCs emission reductions derived from the power, industrial combustion, and solvent use sectors. CO2 reduction occurred mainly in the industrial combustion sector, and CH4 emission increased mainly due to the increase in coal mining activity. The highest synergistic CO2 reductions were achieved by restricting energy consumption in the high energy-consuming and high-emitting sectors; prohibiting new capacity in the steel, coke, cement, and flat glass industries; and replacing coal-fired power generation with renewable energy. Furthermore, the CO2 reduction co-benefit was highest for VOCs. In addition, this study suggests that promoting the policy of terminal electrification and simultaneously increasing the share of clean energy and the ability to consume renewable energy generation in the power sector are the keys to decreasing the emissions in Taiyuan.

17.
Plant Biotechnol J ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38339894

ABSTRACT

In maize, two pyruvate orthophosphate dikinase (PPDK) regulatory proteins, ZmPDRP1 and ZmPDRP2, are respectively specific to the chloroplast of mesophyll cells (MCs) and bundle sheath cells (BSCs). Functionally, ZmPDRP1/2 catalyse both phosphorylation/inactivation and dephosphorylation/activation of ZmPPDK, which is implicated as a major rate-limiting enzyme in C4 photosynthesis of maize. Our study here showed that maize plants lacking ZmPDRP1 or silencing of ZmPDRP1/2 confer resistance to a prevalent potyvirus sugarcane mosaic virus (SCMV). We verified that the C-terminal domain (CTD) of ZmPDRP1 plays a key role in promoting viral infection while independent of enzyme activity. Intriguingly, ZmPDRP1 and ZmPDRP2 re-localize to cytoplasmic viral replication complexes (VRCs) following SCMV infection. We identified that SCMV-encoded cytoplasmic inclusions protein CI targets directly ZmPDRP1 or ZmPDRP2 or their CTDs, leading to their re-localization to cytoplasmic VRCs. Moreover, we found that CI could be degraded by the 26S proteasome system, while ZmPDRP1 and ZmPDRP2 could up-regulate the accumulation level of CI through their CTDs by a yet unknown mechanism. Most importantly, with genetic, cell biological and biochemical approaches, we provide evidence that BSCs-specific ZmPDRP2 could accumulate in MCs of Zmpdrp1 knockout (KO) lines, revealing a unique regulatory mechanism crossing different cell types to maintain balanced ZmPPDK phosphorylation, thereby to keep maize normal growth. Together, our findings uncover the genetic link of the two cell-specific maize PDRPs, both of which are co-opted to VRCs to promote viral protein accumulation for robust virus infection.

18.
Cancer Res ; 84(8): 1303-1319, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38359163

ABSTRACT

The majority of EGFR mutant lung adenocarcinomas respond well to EGFR tyrosine kinase inhibitors (TKI). However, most of these responses are partial, with drug-tolerant residual disease remaining even at the time of maximal response. This residual disease can ultimately lead to relapses, which eventually develop in most patients. To investigate the cellular and molecular properties of residual tumor cells in vivo, we leveraged patient-derived xenograft (PDX) models of EGFR mutant lung cancer. Subcutaneous EGFR mutant PDXs were treated with the third-generation TKI osimertinib until maximal tumor regression. Residual tissue inevitably harbored tumor cells that were transcriptionally distinct from bulk pretreatment tumor. Single-cell transcriptional profiling provided evidence of cells matching the profiles of drug-tolerant cells present in the pretreatment tumor. In one of the PDXs analyzed, osimertinib treatment caused dramatic transcriptomic changes that featured upregulation of the neuroendocrine lineage transcription factor ASCL1. Mechanistically, ASCL1 conferred drug tolerance by initiating an epithelial-to-mesenchymal gene-expression program in permissive cellular contexts. This study reveals fundamental insights into the biology of drug tolerance, the plasticity of cells through TKI treatment, and why specific phenotypes are observed only in certain tumors. SIGNIFICANCE: Analysis of residual disease following tyrosine kinase inhibitor treatment identified heterogeneous and context-specific mechanisms of drug tolerance in lung cancer that could lead to the development of strategies to forestall drug resistance. See related commentary by Rumde and Burns, p. 1188.


Subject(s)
Acrylamides , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/drug therapy , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mutation , Basic Helix-Loop-Helix Transcription Factors/genetics
19.
Dev Comp Immunol ; 154: 105142, 2024 May.
Article in English | MEDLINE | ID: mdl-38309673

ABSTRACT

The fall armyworm, Spodoptera frugiperda, poses a significant threat as a highly destructive agricultural pest in many countries. Understanding the complex interplay between the insect immune system and entomopathogens is critical for optimizing biopesticide efficacy. In this study, we identified a novel microbial binding protein, SfMBP, in S. frugiperda. However, the specific role of SfMBP in the immune response of S. frugiperda remains elusive. Encoded by the LOC118269163 gene, SfMBP shows significant induction in S. frugiperda larvae infected with the entomopathogen Beauveria bassiana. Consisting of 115 amino acids with a signal peptide, an N-terminal flexible region and a C-terminal ß-sheet, SfMBP lacks any known functional domains. It is expressed predominantly during early larval stages and in the larval epidermis. Notably, SfMBP is significantly induced in larvae infected with bacteria and fungi and in SF9 cells stimulated by peptidoglycan. While recombinant SfMBP (rSfMBP) does not inhibit bacterial growth, it demonstrates binding capabilities to bacteria, fungal spores, peptidoglycan, lipopolysaccharides, and polysaccharides. This binding is inhibited by monosaccharides and EDTA. Molecular docking reveals potential Zn2+-interacting residues and three cavities. Furthermore, rSfMBP induces bacterial agglutination in the presence of Zn2+. It also binds to insect hemocytes and SF9 cells, enhancing phagocytosis and agglutination responses. Injection of rSfMBP increased the survival of S. frugiperda larvae infected with B. bassiana, whereas blocking SfMBP with the antibody decreased survival. These results suggest that SfMBP acts as a pattern recognition receptor that enhances pathogen recognition and cellular immune responses. Consequently, this study provides valuable insights for the development of pest control measures.


Subject(s)
Carrier Proteins , Moths , Animals , Spodoptera/physiology , Carrier Proteins/metabolism , Molecular Docking Simulation , Peptidoglycan/metabolism , Moths/metabolism , Larva/metabolism , Insecta/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism
20.
Immun Inflamm Dis ; 12(2): e1140, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38415918

ABSTRACT

BACKGROUND: Inflammatory response of central nervous system is an important component mechanism in the bladder pain of interstitial cystitis/bladder pain syndrome (IC/BPS). Exosomes transfer with microRNAs (miRNA) from mesenchymal stem cell (MSCs) might inhibit inflammatory injury of the central nervous system. Herein, the purpose of our study was to explore the therapeutic effects by which extracellular vesicles (EVs) derived from miR-9-edreched MSCs in IC/BPS and further investigate the potential mechanism to attenuate neuroinflammation. METHODS: On the basis of IC/BPS model, we used various techniques including bioinformatics, cell and molecular biology, and experimental zoology, to elucidate the role and molecular mechanism of TLR4 in regulating the activation of NLRP3 inflammasome in bladder pain of IC/BPS, and investigate the mechanism and feasibility of MSC-EVs enriched with miR-9 in the treatment of bladder pain of IC/BPS. RESULTS: The inflammatory responses in systemic and central derived by TLR4 activation were closely related to the cystitis-induced pelvic/bladder nociception in IC/BPS model. Intrathecal injection of miR-9-enreched MSCs derived exosomes were effective in the treatment of cystitis-induced pelvic/bladder nociception by inhibiting TLR4/NF-κb/NLRP3 signal pathway in central nervous system of IC/BPS mice. CONCLUSIONS: This study demonstrated that miR-9-enreched MSCs derived exosomes alleviate neuroinflammaiton and cystitis-induced bladder pain by inhibiting TLR4/NF-κb/NLRP3 signal pathway in interstitial cystitis mice, which is a promising strategy against cystitis-induced bladder pain.


Subject(s)
Cystitis, Interstitial , Cystitis , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Animals , Mice , Cystitis, Interstitial/therapy , Toll-Like Receptor 4/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NF-kappa B , Urinary Bladder , MicroRNAs/genetics , Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...