Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 255
Filter
1.
Viruses ; 16(5)2024 05 13.
Article in English | MEDLINE | ID: mdl-38793649

ABSTRACT

Influenza vaccines, which are recommended by the World Health Organization (WHO), are the most effective preventive measure against influenza virus infection. Madin-Darby canine kidney (MDCK) cell culture is an emerging technology used to produce influenza vaccines. One challenge when purifying influenza vaccines using this cell culture system is to efficiently remove impurities, especially host cell double-stranded DNA (dsDNA) and host cell proteins (HCPs), for safety assurance. In this study, we optimized ion-exchange chromatography methods to harvest influenza viruses from an MDCK cell culture broth, the first step in influenza vaccine purification. Bind/elute was chosen as the mode of operation for simplicity. The anion-exchange Q chromatography method was able to efficiently remove dsDNA and HCPs, but the recovery rate for influenza viruses was low. However, the cation-exchange SP process was able to simultaneously achieve high dsDNA and HCP removal and high influenza virus recovery. For the SP process to work, the clarified cell culture broth needed to be diluted to reduce its ionic strength, and the optimal dilution rate was determined to be 1:2 with purified water. The SP process yielded a virus recovery rate exceeding 90%, as measured using a hemagglutination units (HAUs) assay, with removal efficiencies over 97% for HCPs and over 99% for dsDNA. Furthermore, the general applicability of the SP chromatography method was demonstrated with seven strains of influenza viruses recommended for seasonal influenza vaccine production, including H1N1, H3N2, B (Victoria), and B (Yamagata) strains, indicating that the SP process could be utilized as a platform process. The SP process developed in this study showed four advantages: (1) simple operation, (2) a high recovery rate for influenza viruses, (3) a high removal rate for major impurities, and (4) general applicability.


Subject(s)
Influenza Vaccines , Virion , Animals , Dogs , Madin Darby Canine Kidney Cells , Virion/isolation & purification , Chromatography, Ion Exchange/methods , Virus Cultivation/methods , Orthomyxoviridae/isolation & purification , Cell Culture Techniques/methods
2.
Environ Res ; 252(Pt 4): 119070, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710431

ABSTRACT

Mangrove wetlands, as one of the natural ecosystems with the most ecological services, have garnered widespread attention about their microbial driven biogeochemical cycling. Urbanization have led to different spatial patterns of environmental conditions and microbial communities in mangroves. However, viruses, as the pivotal drivers of biogeochemical cycling in mangroves, remain inadequately explored in terms of how their ecological potential and complex interactions with host respond to functional zonings. To address this knowledge gap, we conducted a comprehensive investigation on the structural and functional properties of temperate and lytic viruses in mangrove wetlands from different functional zonings by jointly using high-throughput sequencing, prokaryotic and viral metagenomics. Multiple environmental factors were found to significantly influence the taxonomic and functional composition, as well as lysogen-lysis decision-making of mangrove viruses. Furthermore, enriched auxiliary metabolic genes (AMGs) involved in methane, nitrogen and sulfur metabolism, and heavy metal resistance were unveiled in mangrove viruses, whose community composition was closely related to lifestyle and host. The virus-host pairs with different lifestyles were also discovered to react to environmental changes in different ways, which provided an empirical evidence for how virus and bacteria dynamics were specific to viral lifestyles in nature. This study expands our comprehension of the intricate interactions among virus, prokaryotic host and the environment in mangrove wetlands from multiple perspectives, including viral lifestyles, virus-host interactions, and habitat dependence. Importantly, it provides a new ecological perspective on how mangrove viruses are adapted to the stress posed by urbanization.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 505-511, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38660859

ABSTRACT

OBJECTIVE: To analyze the effect of recombinant human thrombopoietin (rhTPO) on platelet (PLT) reconstitution after autologous peripheral blood stem cell transplantation (APBSCT) in patients with multiple myeloma (MM). METHODS: The clinical data of 147 MM patients who were diagnosed in the First Affiliated Hospital of Soochow University and received APBSCT as the first-line therapy were retrospectively analyzed. According to whether rhTPO was used during APBSCT, the patients were divided into rhTPO group (80 cases) and control group (67 cases). The time of PLT engraftment, blood product infusion requirements, the proportion of patients with PLT recovery to≥50×109/L and≥100×109/L at +14 days and +100 days after transplantation, and adverse reactions including the incidence of bleeding were compared between the two groups. RESULTS: There were no significant differences between the two groups in sex, age, M protein type, PLT count at the initial diagnosis, median duration of induction therapy before APBSCT, and number of CD34+ cells reinfused (all P >0.05). The median time of PLT engraftment in the rhTPO group was 10 (6-14) days, which was shorter than 11 (8-23) days in the control group (P < 0.001). The median PLT transfusion requirement in the rhTPO group during APBSCT was 15(0-50)U, which was less than 20 (0-80)U in the control group (P =0.001). At +14 days after transplantation, the proportions of patients with PLT≥50×109/L in the rhTPO group and the control group were 66.3% and 52.2%, while the proportions of patients with PLT≥100×109/L were 23.8% and 11.9%, respectively, with no significant differences (all P >0.05). At +100 days after transplantation, the proportion of patients with PLT≥50×109/L in rhTPO group and control group was 96.3% and 89.6%, respectively (P >0.05), but the proportion of patients with PLT≥100×109/L in rhTPO group was higher than that in control group (75.0% vs 55.2%, P =0.012). There was no difference in the overall incidence of bleeding events in different locations during period of low PLT level of patients between the two groups. In rhTPO group, the rhTPO administration was well tolerated, and the incidences of abnormal liver and kidney function and infection were similar to those in the control group. CONCLUSION: When MM patients undergo first-line APBSCT, subcutaneous injection of rhTPO can shorten the time of platelet engraftment, reduce the transfusion volume of blood products, and be well tolerated, moreover, more patients have achieve a high level of PLT recovery after transplantation, which is very important for ensuring the safety of APBSCT and maintenance therapy.


Subject(s)
Multiple Myeloma , Peripheral Blood Stem Cell Transplantation , Recombinant Proteins , Thrombopoietin , Transplantation, Autologous , Humans , Multiple Myeloma/therapy , Recombinant Proteins/administration & dosage , Blood Platelets , Platelet Count , Male , Female
4.
Regen Biomater ; 11: rbae019, 2024.
Article in English | MEDLINE | ID: mdl-38525327

ABSTRACT

Non-invasive image-guided precise photothermal/photodynamic therapy (PTT/PDT) has been proven to be an effective local treatment modality but incompetent against metastases. Hence, the combination of local PTT/PDT and systemic immunotherapy would be a promising strategy for tumor eradication. Herein, a magnetic resonance imaging (MRI)-visualized PTT/PDT agent (SIDP NMs) was constructed, and the efficacy of its multimodal combination with a programmed cell death 1 (PD-1) inhibitor in the treatment of melanoma and metastases was studied. Due to the hydrophobic encapsulation of indocyanine green within the micellar core, SIDP NMs exhibited excellent photothermal/photodynamic properties and stability under an 808 nm near-infrared laser. In vitro cell experiments showed that SIDP NMs had a good killing effect. After incubating with B16-F10 cells for 24 h and irradiating with an 808-nm laser for 10 min, cell viability decreased significantly. Magnetic resonance imaging experiments in melanoma-bearing mice have shown that the dynamic distribution of SIDP NMs in tumor tissue could be monitored by T2WI and T2-MAP non-invasively due to the presence of superparamagnetic iron oxide nanocrystal in SIDP NMs. When the 808 nm laser was irradiated at the maximum focusing time point shown by MRI, the temperature of the tumor area rapidly increased from 32°C to 60.7°C in 5 min. In mouse melanoma ablation and distant tumor immunotherapy studies, SIDP NMs provided excellent MRI-guided PTT/PDT results and, when combined with PD-1 inhibitor, have great potential to cure primary tumors and eradicate metastases.

5.
Biology (Basel) ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38534420

ABSTRACT

E. sinensis is an animal model for studying the reproduction and development of crustaceans. In this study, we knocked down the Es-Kif2a gene by injecting dsRNA into E. sinensis and inhibited Es-Plk1 gene expression by injecting PLK1 inhibitor BI6727 into E. sinensis. Then, the cell proliferation level, apoptosis level, and PI3K/AKT signaling expression level were detected. Our results showed that the proliferation level of spermatogenic cells decreased, while the apoptosis level increased after Es-Kif2a knockdown or Es-Plk1 inhibition. In order to verify whether these changes are caused by regulating the PI3K/AKT pathway, we detected the expression of PI3K and AKT proteins after Es-Kif2a knockdown or Es-Plk1 inhibition. Western Blot showed that in both the Es-Kif2a knockdown group and the Es-Plk1 inhibition group, the expression of PI3K and AKT proteins decreased. In addition, immunofluorescence showed that Es-KIF2A and Es-PLK1 proteins were co-localized during E. sinensis spermatogenesis. To further explore the upstream and downstream relationship between Es-KIF2A and Es-PLK1, we detected the expression level of Es-PLK1 after Es-Kif2a knockdown as well as the expression level of Es-KIF2A after Es-Plk1 inhibition. Western Blot showed that the expression of Es-PLK1 decreased after Es-Kif2a knockdown, while there was no significant change of Es-KIF2A after Es-Plk1 inhibition, indicating that Es-PLK1 may be a downstream factor of Es-KIF2A. Taken together, these results suggest that Es-KIF2A upregulates the PI3K/AKT signaling pathway through Es-PLK1 during the spermatogenesis of E. sinensis, thereby affecting the proliferation and apoptosis levels of spermatogenic cells.

6.
Front Oncol ; 14: 1360831, 2024.
Article in English | MEDLINE | ID: mdl-38529376

ABSTRACT

Background: Rapid On-Site Evaluation (ROSE) during flexible bronchoscopy (FB) can improve the adequacy of biopsy specimens and diagnostic yield of lung cancer. However, the lack of cytopathologists has restricted the wide use of ROSE. Objective: To develop a ROSE artificial intelligence (AI) system using deep learning techniques to differentiate malignant from benign lesions based on ROSE cytological images, and evaluate the clinical performance of the ROSE AI system. Method: 6357 ROSE cytological images from 721 patients who underwent transbronchial biopsy were collected from January to July 2023 at the Tangdu Hospital, Air Force Medical University. A ROSE AI system, composed of a deep convolutional neural network (DCNN), was developed to identify whether there were malignant cells in the ROSE cytological images. Internal testing, external testing, and human-machine competition were used to evaluate the performance of the system. Results: The ROSE AI system identified images containing lung malignant cells with the accuracy of 92.97% and 90.26% on the internal testing dataset and external testing dataset respectively, and its performance was comparable to that of the experienced cytopathologist. The ROSE AI system also showed promising performance in diagnosing lung cancer based on ROSE cytological images, with accuracy of 89.61% and 87.59%, and sensitivity of 90.57% and 94.90% on the internal testing dataset and external testing dataset respectively. More specifically, the agreement between the ROSE AI system and the experienced cytopathologist in diagnosing common types of lung cancer, including squamous cell carcinoma, adenocarcinoma, and small cell lung cancer, demonstrated almost perfect consistency in both the internal testing dataset (κ = 0.930) and the external testing dataset (κ = 0.932). Conclusions: The ROSE AI system demonstrated feasibility and robustness in identifying specimen adequacy, showing potential enhancement in the diagnostic yield of FB. Nevertheless, additional enhancements, incorporating a more diverse range of training data and leveraging advanced AI models with increased capabilities, along with rigorous validation through extensive multi-center randomized control assays, are crucial to guarantee the seamless and effective integration of this technology into clinical practice.

7.
Bioorg Chem ; 146: 107278, 2024 May.
Article in English | MEDLINE | ID: mdl-38484586

ABSTRACT

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Kidney Neoplasms , Lung Neoplasms , Humans , Vascular Endothelial Growth Factor Receptor-1 , Vascular Endothelial Growth Factor Receptor-2 , Carcinoma, Non-Small-Cell Lung/drug therapy , Angiogenesis Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Kidney Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry
8.
World J Clin Cases ; 12(6): 1084-1093, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38464916

ABSTRACT

BACKGROUND: Parental behaviors are key in shaping children's psychological and behavioral development, crucial for early identification and prevention of mental health issues, reducing psychological trauma in childhood. AIM: To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children. METHODS: From October 2017 to May 2018, 7 kindergartens in Ma'anshan City were selected to conduct a parent self-filled questionnaire - Health Development Survey of Preschool Children. Children's Strength and Difficulties Questionnaire (Parent Version) was applied to measures the children's behavioral and emotional performance. Parenting behavior was evaluated using the Parental Behavior Inventory. Binomial logistic regression model was used to analyze the association between the detection rate of preschool children's behavior and emotional problems and their parenting behaviors. RESULTS: High level of parental support/participation was negatively correlated with conduct problems, abnormal hyperactivity, abnormal total difficulty scores and abnormal prosocial behavior problems. High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children. High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms, abnormal conduct problems, abnormal hyperactivity, abnormal peer interaction, and abnormal total difficulty scores in children (all P < 0.05). Moreover, paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors (all P > 0.05), after calculating ratio of odds ratio values. CONCLUSION: Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children. Overall, the more supportive or involved the parents are, the fewer behavioral and emotional problems the children experience; conversely, the more hostile or controlling the parents are, the more behavioral and emotional problems the children face. Moreover, the impact of fathers' parenting behaviors on preschool children's behavior and emotions is no less significant than that of mothers' parenting behaviors.

9.
Tissue Eng Regen Med ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466363

ABSTRACT

BACKGROUND: The derivation of salivary gland (SG) progenitors from pluripotent stem cells (PSCs) presents significant potential for developmental biology and regenerative medicine. However, the existing protocols for inducing SG include limited factors, making it challenging to mimic the in vivo microenvironment of embryonic SGs. METHODS: We reported a cocktail factor approach to promote the differentiation of mouse embryonic stem cell (mESC)-derived oral epithelium (OE) into SG progenitors through a three-dimensional co-culture method. Upon confirming that the embryonic SG can promote the differentiation of mESC-derived OE, we performed RNA sequence analysis to identify factors involved in the differentiation of SG progenitors. RESULTS: Our findings highlight several efficient pathways related to SG development, with frequent appearances of four factors: IFN-γ, TGF-ß2, EGF, and IGF-1. The combined treatment using these cocktail factors increased the expression of key SG progenitor markers, including Sox9, Sox10, Krt5, and Krt14. However, absence of any one of these cocktail factors did not facilitate differentiation. Notably, aggregates treated with the cocktail factor formed SG epithelial-like structures and pre-bud-like structures on the surface. CONCLUSION: In conclusion, this study offers a novel approach to developing a differentiation protocol that closely mimics the in vivo microenvironment of embryonic SGs. This provides a foundation for generating PSC-derived organoids with near-physiological cell behaviors and structures.

10.
Discov Oncol ; 15(1): 78, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502423

ABSTRACT

PURPOSE: To evaluate the efficacy of next-generation sequencing (NGS) in minimal-residual-disease (MRD) monitoring in Chinese patients with multiple myeloma (MM). METHODS: This study analyzed 60 Chinese MM patients. During MRD monitoring in these patients' post-therapy, clonal immunoglobulin heavy chain (IGH) rearrangements were detected via NGS using LymphoTrack assays. MRD monitoring was performed using NGS or next-generation flow cytometry (NGF), and the results were compared. Additionally, the sensitivity and reproducibility of the NGS method were assessed. RESULTS: The MRD detection range of the NGS method was 10-6-10-1, which suggested good linearity, with a Pearson correlation coefficient of 0.985 and a limit of detection of 10-6. Intra- and inter-assay reproducibility analyses showed that NGS exhibited 100% reproducibility with low variability in clonal cells. At diagnosis, unique clones were found in 42 patients (70.0%) with clonal IGH rearrangements, which were used as clonality markers for MRD monitoring post-therapy. Comparison of NGS and NGF for MRD monitoring showed 79.1% concordance. No samples that tested MRD-positive via NGF were found negative via NGS, indicating the higher sensitivity of NGS. MRD could be detected using NGS in 6 of 7 samples before autologous hematopoietic stem-cell transplantation, and 5 of them tested negative post-transplantation. In contrast, the NGF method could detect MRD in only 1 sample pre-transplantation. CONCLUSION: Compared with NGF, NGS exhibits higher sensitivity and reproducibility in MRD detection and can be an effective strategy for MRD monitoring in Chinese MM patients.

11.
J Appl Genet ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478326

ABSTRACT

Globally, breast cancer (BC) is the leading cause of female death and morbidity. Homologous recombination repair (HRR) is critical in BC. However, the prognostic role and immunotherapy response of HRR in BC remains to be clarified. Firstly, we identified HRR types in BC samples from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) dataset (GSE42568) based on 65 HRR genes (HRRGs). A differentially expressed gene (DEG) list for different HRR types was generated. Then, the influences of gene sets composed of these DEGs on biological pathways and BC prognosis were explored. Next, we identified gene clusters based on gene sets composed of DEGs. Genes associated with prognosis for DEGs were identified using univariate Cox regression. Finally, the HRR score was constructed based on genes associated with prognosis. We analyzed how HRR score correlates with tumor mutation burden (TMB), immune cell infiltration (ICI), and immunotherapy response. Three HRR clusters were discovered. HRR subtype A demonstrated decreased infiltration and a high number of immunosuppressive cells with a poor prognosis. DEGs among various HRR types were predominantly enriched in cell cycle and genomic stability-related pathways. The prognostic model based on sixteen DEGs accurately predicted BC prognosis. The HRRGs were differentially expressed in three DEG clusters. TMB, ICI, and immunotherapy responses differed significantly between the high and low HRR groups (HSG, LSG). The HSG was distinguished by a high degree of ICI and low TMB. LSG had a better response to anti-PD-1 or anti-PD-1 and anti-CTLA4 combination therapy. This work revealed that HRR patterns would contribute to predicting prognosis and immunotherapy response in BC, which may benefit patients.

12.
J Hazard Mater ; 469: 133975, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452667

ABSTRACT

Doxycycline (DOX) represents a second-generation tetracycline antibiotic that persists as a challenging-to-degrade contaminant in environmental compartments. Despite its ubiquity, scant literature exists on bacteria proficient in DOX degradation. This study marked a substantial advancement in this field by isolating Chryseobacterium sp. WX1 from an activated sludge enrichment culture, showcasing its unprecedented ability to completely degrade 50 mg/L of DOX within 44 h. Throughout the degradation process, seven biotransformation products were identified, revealing a complex pathway that began with the hydroxylation of DOX, followed by a series of transformations. Employing an integrated multi-omics approach alongside in vitro heterologous expression assays, our study distinctly identified the tetX gene as a critical facilitator of DOX hydroxylation. Proteomic analyses further pinpointed the enzymes postulated to mediate the downstream modifications of DOX hydroxylation derivatives. The elucidated degradation pathway encompassed several key biological processes, such as the microbial transmembrane transport of DOX and its intermediates, the orchestration of enzyme synthesis for transformation, energy metabolism, and other gene-regulated biological directives. This study provides the first insight into the adaptive biotransformation strategies of Chryseobacterium under DOX-induced stress, highlighting the potential applications of this strain to augment DOX removal in wastewater treatment systems containing high concentrations of DOX.


Subject(s)
Chryseobacterium , Doxycycline , Chryseobacterium/genetics , Multiomics , Proteomics , Biotransformation
13.
Phytomedicine ; 128: 155464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484625

ABSTRACT

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Subject(s)
Amaryllidaceae Alkaloids , Angiotensin II , Mice, Inbred C57BL , NF-kappa B , Phenanthridines , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amaryllidaceae Alkaloids/pharmacology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phenanthridines/pharmacology , Male , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Mice , Heart Failure/drug therapy , Ventricular Remodeling/drug effects , Inflammation/drug therapy , Myocytes, Cardiac/drug effects , Hypertension/drug therapy , Hypertension/chemically induced , Disease Models, Animal , Lycoris/chemistry , Myocardium
14.
BMC Anesthesiol ; 24(1): 66, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378447

ABSTRACT

BACKGROUND: Esketamine is increasingly used in clinical anesthesia. The effect of esketamine on the blood flow velocity of the middle cerebral artery has a clinical guiding effect. To investigate the effect of esketamine combined with propofol-induced general anesthesia for endotracheal intubation on the blood flow velocity of middle cerebral artery and hemodynamics during the induction period. METHODS: The randomized clinical trial included 80 patients aged 20-65 years who would undergo non-intracranial elective surgery under general anesthesia in our hospital from May 2022 to May 2023. The participants were divided into two groups based on anesthesia drugs: sufentanil 0.5µg/kg (group C) or 1.5mg/kg esketamine (group E). The primary outcome was variation value in average cerebral blood velocity. The secondary outcomes included cerebral blood flow velocities (CBFV), blood pressure (BP) and heart rate (HR) at four different time points: before induction of general anesthesia (T0), 1 min after the induction drug injected (T1), before endotracheal intubation (T2), and 1min after endotracheal intubation (T3). The occurrence of hypotension, hypertension, tearing and choking during induction was also documented. RESULTS: The variation of average CBFV from time T0 to T2(ΔVm1) and the variation from time T3 to T0 (ΔVm2) were not obviously different. The median consumption of intraoperative sufentanil in group C was obviously lower than that in group E. At T1, the mean HR of group E was significantly higher than that of group C. At T2 and T3, the BP and HR of group E were obviously higher than that of group C. At T2, the CBFV in the group E were obviously higher than those in the group C. The incidence of hypotension was significantly reduced in the group E compared with the group C. There were no differences in the other outcomes. CONCLUSIONS: The induction of esketamine combined with propofol does not increase the blood flow velocity of middle cerebral artery. Esketamine is advantageous in maintaining hemodynamic stability during induction. Furthermore, the administration of esketamine did not result in an increased incidence of adverse effects. TRIAL REGISTRATION: 15/06/2023 clinicaltrials.gov ChiCTR2300072518 https://www.chictr.org.cn/bin/project/edit?pid=176675 .


Subject(s)
Ketamine , Propofol , Humans , Anesthesia, General , Cerebrovascular Circulation , Hypotension , Ketamine/pharmacology , Propofol/pharmacology , Sufentanil/pharmacology , Young Adult , Adult , Middle Aged , Aged
15.
Microbiome ; 12(1): 43, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424602

ABSTRACT

BACKGROUND: Bioaugmentation has the potential to enhance the ability of ecological technology to treat sulfonamide-containing wastewater, but the low viability of the exogenous degraders limits their practical application. Understanding the mechanism is important to enhance and optimize performance of the bioaugmentation, which requires a multifaceted analysis of the microbial communities. Here, DNA-stable isotope probing (DNA-SIP) and metagenomic analysis were conducted to decipher the bioaugmentation mechanisms in stabilization pond sediment microcosms inoculated with sulfamethoxazole (SMX)-degrading bacteria (Pseudomonas sp. M2 or Paenarthrobacter sp. R1). RESULTS: The bioaugmentation with both strains M2 and R1, especially strain R1, significantly improved the biodegradation rate of SMX, and its biodegradation capacity was sustainable within a certain cycle (subjected to three repeated SMX additions). The removal strategy using exogenous degrading bacteria also significantly abated the accumulation and transmission risk of antibiotic resistance genes (ARGs). Strain M2 inoculation significantly lowered bacterial diversity and altered the sediment bacterial community, while strain R1 inoculation had a slight effect on the bacterial community and was closely associated with indigenous microorganisms. Paenarthrobacter was identified as the primary SMX-assimilating bacteria in both bioaugmentation systems based on DNA-SIP analysis. Combining genomic information with pure culture evidence, strain R1 enhanced SMX removal by directly participating in SMX degradation, while strain M2 did it by both participating in SMX degradation and stimulating SMX-degrading activity of indigenous microorganisms (Paenarthrobacter) in the community. CONCLUSIONS: Our findings demonstrate that bioaugmentation using SMX-degrading bacteria was a feasible strategy for SMX clean-up in terms of the degradation efficiency of SMX, the risk of ARG transmission, as well as the impact on the bacterial community, and the advantage of bioaugmentation with Paenarthrobacter sp. R1 was also highlighted. Video Abstract.


Subject(s)
Micrococcaceae , Water Pollutants, Chemical , Sulfamethoxazole/metabolism , Water Pollutants, Chemical/metabolism , Wastewater , Anti-Bacterial Agents/metabolism , Bacteria/genetics , Bacteria/metabolism , Micrococcaceae/genetics , Biodegradation, Environmental , DNA
16.
Plant Dis ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38301220

ABSTRACT

Loquat (Eriobotrya japonica) is an economically important subtropical fruit crop in China. Field surveys conducted in different loquat orchards located in Chongqing, Sichuan and Fujian province between 2017-2020 resulted in a collection of 56 Alternaria-like isolates from trees exhibiting symptoms of loquat leaf spot. Multigene phylogenetic analyses using seven gene regions, namely ITS, gapdh, RPB2, tef1, Alt a 1, endoPG and OPA10-2, showed that all the isolates belonged to the genus Alternaria, and supporting morphological analysis identified them as members of species A. alternata, A. gaisen and A. chongqingensis sp. nov. In vitro- and in vivo- pathogenicity tests showed all the identified species to be pathogenic and able to cause leaf spot disease on loquat. Moreover, comprehensive phylogenetic analyses employing all combinations of the above seven gene sequences revealed the capability of Alt a 1-tef1-endoPG to provide a well-resolved gene tree for Alternaria spp. at the species level. This study adds to the current knowledge on an unknown species (A. chongqingensis sp. nov.) and the first report of A. gaisen in loquat worldwide.

17.
Environ Technol ; : 1-10, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38312076

ABSTRACT

A series of activated carbon was obtained from rape straw by chemical modification with phosphoric acid (H3PO4). The activated carbon was characterized and the adsorption capacity for Rhodamine B (RhB) from water was analysed. The SEM images showed that PRC-40 is a porous material and the BET analysis revealed a high surface area of 1720 m2/g with the coexistence of micropores and mesopores. The FTIR spectra determined the presence of oxygenated functional groups at its surface. The XPS spectra revealed that the content of carboxyl and metaphosphate groups in the modified activated carbon significantly increased, and this is conducive to the adsorption reaction. The XRD pattern showed the amorphous nature of carbon. The effect of significant parameters, such as the concentration of H3PO4 for modification and pH value, has been discussed. The kinetic data showed that the pseudo-second-order model is predominant. Besides, the Langmuir model was compatible well with the equilibrium data, and the maximum adsorption capacity of the activated carbon modified by H3PO4 was 2882.84 mg/g. Therefore, agricultural waste and rape straw can be used to prepare effective adsorbents for the application with the removal of dye from wastewater.

18.
Ann Diagn Pathol ; 69: 152261, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38262192

ABSTRACT

BACKGROUND: Pathology is considered the gold standard for the diagnosis of lung lesions, but the pathological result is relatively lagging and cannot provide real-time guidance for the biopsy procedure. OBJECTIVE: To investigate the potential application of rapid on-site evaluation (ROSE) during flexible bronchoscopy (FB) in the evaluation and diagnosis of lung lesions. PATIENTS AND METHODS: Consecutive patients who underwent FB for the diagnosis of lung lesions between August 2022 and February 2023 were included in this retrospective study. 294 patients underwent FB with ROSE, while 304 patients underwent FB without ROSE. The final pathological results and the number of patients undergoing repeat biopsies were recorded in both groups. Specifically, we conducted separate statistical analysis for patients undergoing different biopsy methods, including the endobronchial biopsy (EBB), radial probe endobronchial ultrasound transbronchial lung biopsy with guide sheath (r-EBUS-GS-TBLB), and the endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) to study the detailed roles that ROSE plays under different biopsy methods. RESULTS: The adequacy rate of biopsy specimens from the non-ROSE group was significantly lower than that of the ROSE group (259/281 = 92.17 % vs. 263/268 = 98.13 %, p = 0.001). Meanwhile, fewer patients underwent repeat biopsies in the ROSE group compared to the non-ROSE group (2/294 = 0.68 % vs. 10/304 = 3.29 %, p = 0.023). For the ROSE group, the consistency between ROSE diagnoses and final pathological diagnoses was 94.40 % (κ = 0.886), with 95.58 % for benign diseases and 93.55 % for malignant diseases. CONCLUSION: The utility of ROSE during FB increases the adequacy rate of biopsy specimens and thus decreases the need for repeat biopsies in patients with lung lesions to get a definite diagnosis. Moreover, the high consistency between ROSE diagnoses and final pathological diagnoses suggests that ROSE is a reliable tool for optimizing the diagnosis of lung lesions.


Subject(s)
Bronchoscopy , Lung Neoplasms , Humans , Bronchoscopy/methods , Rapid On-site Evaluation , Retrospective Studies , Endoscopic Ultrasound-Guided Fine Needle Aspiration/methods , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology
19.
Int J Artif Organs ; 47(2): 96-106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38186004

ABSTRACT

OBJECTIVE: To systematically evaluate the clinical efficacy of pulmonary rehabilitation in patients with mechanical ventilation in an intensive care unit (ICU). METHODS: Relevant studies were identified in the PubMed, Web of Science, National Library of Medicine, China National Knowledge Infrastructure and Wanfang databases. A meta-analysis was performed after screening based on the inclusion and exclusion criteria, data extraction and literature quality evaluation. RESULTS: In total, 19 studies involving 2181 participants were included. The results of the meta-analysis revealed that compared with patients with conventional rehabilitation measures, patients with pulmonary rehabilitation measures had a higher offline success rate (relative risk (RR) = 1.16; 95% confidence interval (CI): 1.09, 1.24; p < 0.00001) and higher arterial oxygen partial pressure levels (mean difference (MD) = 8.96; 95%CI: 5.98, 11.94; p < 0.0001) and these measures significantly shortened the duration of mechanical ventilation (standardised MD (SMD) = -1.08; 95%CI: -1.58, -0.59; p < 0.0001) and ICU stay (SMD = -1.41; 95%CI: -1.94, -0.88; p < 0.0001). Aspiration significantly reduced the incidence of ventilator-associated pneumonia (RR = 0.35; 95%CI: 0.24, 0.51; p < 0.00001) and deep vein thrombosis (RR = 0.32; 95%CI: 0.13, 0.76; p = 0.01) in ICU patients with mechanical ventilation. CONCLUSION: Pulmonary rehabilitation measures can improve the success rate of weaning from mechanical ventilation in ICU patients, shorten the time of mechanical ventilation and ICU hospitalisation and reduce the incidence of related adverse reactions, but the impact on mortality requires further study.


Subject(s)
Pneumonia, Ventilator-Associated , Respiration, Artificial , Humans , Respiration, Artificial/adverse effects , Pneumonia, Ventilator-Associated/prevention & control , Intensive Care Units , Critical Care , Treatment Outcome
20.
Water Res ; 249: 120958, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38064782

ABSTRACT

Drinking water distribution systems (DWDSs) are important for supplying high-quality water to consumers and disinfectant is widely used to control microbial regrowth in DWDSs. However, the disinfectant's influences on microbial community and antibiotic resistome in DWDS biofilms and the underlying mechanisms driving their dynamics remain elusive. The study investigated the effects of chlorine and chloramine disinfection on the microbiome and antibiotic resistome of biofilms in bench-scale DWDSs using metagenomics assembly. Additionally, the biofilm activity and viability were monitored based on adenosine triphosphate (ATP) and flow cytometer (FCM) staining. The results showed that both chlorine and chloramine disinfectants decreased biofilm ATP, although chloramine at a lower dosage (1 mg/L) could increase it. Chloramine caused a greater decrease in living cells than chlorine. Furthermore, the disinfectants significantly lowered the microbial community diversity and altered microbial community structure. Certain bacterial taxa were enriched, such as Mycobacterium, Sphingomonas, Sphingopyxis, Azospira, and Dechloromonas. Pseudomonas aeruginosa exhibited high resistance towards disinfectants. The disinfectants also decreased the complexity of microbial community networks. Some functional taxa (e.g., Nitrospira, Nitrobacter, Nitrosomonas) were identified as keystones in chloramine-treated DWDS microbial ecological networks. Stochasticity drove biofilm microbial community assembly, and disinfectants increased the contributions of stochastic processes. Chlorine had greater promotion effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and ARG hosts than chloramine. The disinfectants also selected pathogens, such as Acinetobacter baumannii and Klebsiella pneumonia, and these pathogens also harbored ARGs and MGEs. Overall, this study provides new insights into the effects of disinfectants on biofilm microbiome and antibiotic resistome, highlighting the importance of monitoring and managing disinfection practices in DWDSs.


Subject(s)
Disinfectants , Drinking Water , Microbiota , Water Purification , Disinfectants/pharmacology , Drinking Water/chemistry , Chloramines/pharmacology , Chlorine/pharmacology , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Biofilms , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...