Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Arch Biochem Biophys ; 758: 110064, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897534

ABSTRACT

Chemoresistance is one of the major hindrances to many cancer therapies, including esophageal squamous cell carcinoma (ESCC). Ferroptosis, a new programmed cell death, plays an essential role in chemoresistance. IQ-domain GTPase activating protein 1 (IQGAP1) is a scaffold protein and functions as an oncogene in various human malignancies. However, the underlying effect and molecular mechanisms of IQGAP1 on paclitaxel (PTX) resistance and ferroptosis in ESCC remain to be elucidated. In this study, we found that IQGAP1 was highly expressed in ESCC tissues and could as a potential biomarker for diagnosis and predicting the prognosis of ESCC. Functional studies revealed that IQGAP1 overexpression reduced the sensitivity of ESCC cells to PTX by enhancing ESCC cell viability and proliferation and inhibiting cell death, and protected ESCC cells from ferroptosis, whereas IQGAP1 knockdown exhibited contrary effects. Importantly, reductions of chemosensitivity and ferroptosis caused by IQGAP1 overexpression were reversed with ferroptosis inducer RSL3, while the increases of chemosensitivity and ferroptosis caused by IQGAP1 knockdown were reversed with ferroptosis inhibitor ferrostatin-1 (Fer-1) in ESCC cells, indicating that IQGAP1 played a key role in resistance to PTX through regulating ferroptosis. Mechanistically, we demonstrated that IQGAP1 overexpression upregulated the expression of Yes-associated protein (YAP), the central mediator of the Hippo pathway. YAP inhibitor Verteporfin (VP) could reverse the effects of IQGAP1 overexpression on ESCC chemoresistance and ferroptosis. Taken together, our findings suggest that IQGAP1 promotes chemoresistance by blocking ferroptosis through targeting YAP. IQGAP1 may be a novel therapeutic target for overcoming chemoresistance in ESCC.


Subject(s)
Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Paclitaxel , ras GTPase-Activating Proteins , Humans , Ferroptosis/drug effects , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/drug therapy , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Paclitaxel/pharmacology , YAP-Signaling Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/drug effects , Cell Survival/drug effects
2.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791517

ABSTRACT

Maternal immune activation (MIA) is a risk factor for multiple neurodevelopmental disorders; however, animal models developed to explore MIA mechanisms are sensitive to experimental factors, which has led to complexity in previous reports of the MIA phenotype. We sought to characterize an MIA protocol throughout development to understand how prenatal immune insult alters the trajectory of important neurodevelopmental processes, including the microglial regulation of synaptic spines and complement signaling. We used polyinosinic:polycytidylic acid (polyI:C) to induce MIA on gestational day 9.5 in CD-1 mice, and measured their synaptic spine density, microglial synaptic pruning, and complement protein expression. We found reduced dendritic spine density in the somatosensory cortex starting at 3-weeks-of-age with requisite increases in microglial synaptic pruning and phagocytosis, suggesting spine density loss was caused by increased microglial synaptic pruning. Additionally, we showed dysregulation in complement protein expression persisting into adulthood. Our findings highlight disruptions in the prenatal environment leading to alterations in multiple dynamic processes through to postnatal development. This could potentially suggest developmental time points during which synaptic processes could be measured as risk factors or targeted with therapeutics for neurodevelopmental disorders.


Subject(s)
Complement System Proteins , Dendritic Spines , Microglia , Poly I-C , Animals , Microglia/metabolism , Microglia/drug effects , Microglia/immunology , Mice , Female , Pregnancy , Dendritic Spines/metabolism , Poly I-C/pharmacology , Complement System Proteins/metabolism , Complement System Proteins/immunology , Prenatal Exposure Delayed Effects , Phagocytosis , Disease Models, Animal , Somatosensory Cortex/drug effects , Somatosensory Cortex/metabolism , Synapses/metabolism , Synapses/drug effects , Neuronal Plasticity/drug effects
3.
Pharmaceutics ; 16(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38399302

ABSTRACT

Traditional tumor treatments have the drawback of harming both tumor cells and normal cells, leading to significant systemic toxic side effects. As a result, there is a pressing need for targeted drug delivery methods that can specifically target cells or tissues. Currently, researchers have made significant progress in developing targeted drug delivery systems for tumor therapy using various targeting ligands. This review aims to summarize recent advancements in targeted drug delivery systems for tumor therapy, focusing on different targeting ligands such as folic acid, carbohydrates, peptides, aptamers, and antibodies. The review also discusses the advantages, challenges, and future prospects of these targeted drug delivery systems.

4.
Mol Psychiatry ; 29(4): 1099-1113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38212373

ABSTRACT

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability. There is no specific treatment for FXS due to the lack of therapeutic targets. We report here that Elongation Factor 1α (EF1α) forms a complex with two other proteins: Tripartite motif-containing protein 3 (TRIM3) and Murine double minute (Mdm2). Both EF1α-Mdm2 and EF1α-TRIM3 protein complexes are increased in the brain of Fmr1 knockout mice as a result of FMRP deficiency, which releases the normal translational suppression of EF1α mRNA and increases EF1α protein levels. Increased EF1α-Mdm2 complex decreases PSD-95 ubiquitination (Ub-PSD-95) and Ub-PSD-95-C1q interaction. The elevated level of TRIM3-EF1α complex is associated with decreased TRIM3-Complement Component 3 (C3) complex that inhibits the activation of C3. Both protein complexes thereby contribute to a reduction in microglia-mediated phagocytosis and dendritic spine pruning. Finally, we created a peptide that disrupts both protein complexes and restores dendritic spine plasticity and behavioural deficits in Fmr1 knockout mice. The EF1α-Mdm2 and EF1α-TRIM3 complexes could thus be new therapeutic targets for FXS.


Subject(s)
Dendritic Spines , Fragile X Mental Retardation Protein , Mice, Knockout , Microglia , Neuronal Plasticity , Peptide Elongation Factor 1 , Phagocytosis , Animals , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , Microglia/metabolism , Mice , Neuronal Plasticity/physiology , Dendritic Spines/metabolism , Phagocytosis/physiology , Peptide Elongation Factor 1/metabolism , Fragile X Syndrome/metabolism , Fragile X Syndrome/genetics , Mice, Inbred C57BL , Male , Brain/metabolism , Disks Large Homolog 4 Protein/metabolism , Ubiquitination , Complement C3/metabolism
5.
Sci Adv ; 9(49): eadj6187, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38064562

ABSTRACT

While most research and treatments for multiple sclerosis (MS) focus on autoimmune reactions causing demyelination, it is possible that neurodegeneration precedes the autoimmune response. Hence, glutamate receptor antagonists preventing excitotoxicity showed promise in MS animal models, though blocking glutamate signaling prevents critical neuronal functions. This study reports the discovery of a small molecule that prevents AMPA-mediated excitotoxicity by targeting an allosteric binding site. A machine learning approach was used to screen for small molecules targeting the AMPA receptor GluA2 subunit. The lead candidate has potent effects in restoring neurological function and myelination while reducing the immune response in experimental autoimmune encephalitis and cuprizone MS mouse models without affecting basal neurotransmission or learning and memory. These findings facilitate development of a treatment for MS with a different mechanism of action than current immune modulatory drugs and avoids important off-target effects of glutamate receptor antagonists. This class of MS therapeutics could be useful as an alternative or complementary treatment to existing therapies.


Subject(s)
Multiple Sclerosis , Mice , Animals , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, AMPA , Neurons/metabolism
6.
J Neurosci ; 43(36): 6230-6248, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37474308

ABSTRACT

Synaptic vesicle (SV) endocytosis is a critical and well-regulated process for the maintenance of neurotransmission. We previously reported that synaptotagmin-11 (Syt11), an essential non-Ca2+-binding Syt associated with brain diseases, inhibits neuronal endocytosis (Wang et al., 2016). Here, we found that Syt11 deficiency caused accelerated SV endocytosis and vesicle recycling under sustained stimulation and led to the abnormal membrane partition of synaptic proteins in mouse hippocampal boutons of either sex. Furthermore, our study revealed that Syt11 has direct but Ca2+-independent binding with endophilin A1 (EndoA1), a membrane curvature sensor and endocytic protein recruiter, with high affinity. EndoA1-knockdown significantly reversed Syt11-KO phenotype, identifying EndoA1 as a main inhibitory target of Syt11 during SV endocytosis. The N-terminus of EndoA1 and the C2B domain of Syt11 were responsible for this interaction. A peptide (amino acids 314-336) derived from the Syt11 C2B efficiently blocked Syt11-EndoA1 binding both in vitro and in vivo Application of this peptide inhibited SV endocytosis in WT hippocampal neurons but not in EndoA1-knockdown neurons. Moreover, intracellular application of this peptide in mouse calyx of Held terminals of either sex effectively hampered both fast and slow SV endocytosis at physiological temperature. We thus propose that Syt11 ensures the precision of protein retrieval during SV endocytosis by inhibiting EndoA1 function at neuronal terminals.SIGNIFICANCE STATEMENT Endocytosis is a key stage of synaptic vesicle (SV) recycling. SV endocytosis retrieves vesicular membrane and protein components precisely to support sustained neurotransmission. However, the molecular mechanisms underlying the regulation of SV endocytosis remain elusive. Here, we reported that Syt11-KO accelerated SV endocytosis and impaired membrane partition of synaptic proteins. EndoA1 was identified as a main inhibitory target of Syt11 during SV endocytosis. Our study reveals a novel inhibitory mechanism of SV endocytosis in preventing hyperactivation of endocytosis, potentially safeguarding the recycling of synaptic proteins during sustained neurotransmission.


Subject(s)
Synaptic Transmission , Synaptic Vesicles , Animals , Mice , Endocytosis , Neurons/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism , Synaptotagmins/genetics , Synaptotagmins/metabolism
7.
Front Endocrinol (Lausanne) ; 14: 1162445, 2023.
Article in English | MEDLINE | ID: mdl-37152963

ABSTRACT

Graves' disease (GD) is characterized by diffuse enlargement and overactivity of the thyroid gland, which may be accompanied by other physical symptoms. Among them, depression can dramatically damage patients' quality of life, yet its prevalence in GD has not received adequate attention. Some studies have established a strong correlation between GD and increased risk of depression, though the data from current study remains limited. The summary of mechanistic insights regarding GD and depression has underpinned possible pathways by which GD contributes to depression. In this review, we first summarized the clinical evidence that supported the increased prevalence of depression by GD. We then concentrated on the mechanistic findings related to the acceleration of depression in the context of GD, as mounting evidence has indicated that GD promotes the development of depression through various mechanisms, including triggering autoimmune responses, inducing hormonal disorders, and influencing the thyroid-gut-microbiome-brain axis. Finally, we briefly presented potential therapeutic approaches to decreasing the risk of depression among patients with GD.


Subject(s)
Depression , Graves Disease , Humans , Depression/epidemiology , Depression/etiology , Quality of Life , Graves Disease/complications , Graves Disease/epidemiology , Graves Disease/diagnosis
8.
Neuropsychopharmacology ; 48(3): 508-517, 2023 02.
Article in English | MEDLINE | ID: mdl-36076020

ABSTRACT

Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits including those in Alzheimer's disease. SAP has been observed to be elevated in patients with depression, and higher SAP levels are associated with better response to the antidepressant escitalopram. The mechanisms underlying these clinical observations remain unclear. We examined the effect of SAP on serotonin transporter (SERT) expression and localization using Western blot, confocal microscopy, and positron emission tomography with the radioligand [11C]DASB. We also investigated the effect of SAP on treatment response to escitalopram in mice with the forced swim test (FST), a classical behaviour paradigm to assess antidepressant effects. SAP reduced [11C]DASB binding as an index of SERT levels, consistent with Western blots showing decreased total SAP protein because of increased protein degradation. In conjunction with the global decrease in SERT levels, SAP also promotes VAMP-2 mediated SERT membrane insertion. SAP levels are correlated with behavioural despair and SSRI treatment response in mice with FST. In MDD patients, the SAP and membrane SERT levels are correlated with response to SSRI treatment. SAP has complex effects on SERT levels and localization, thereby modulating the effect of SSRIs, which could partially explain clinical variability in antidepressant treatment response. These results add to our understanding of the mechanism for antidepressant drug action, and with further work could be of clinical utility.


Subject(s)
Serotonin Plasma Membrane Transport Proteins , Serum Amyloid P-Component , Humans , Mice , Animals , Serotonin Plasma Membrane Transport Proteins/metabolism , Serum Amyloid P-Component/metabolism , Escitalopram , Antidepressive Agents/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology
9.
Front Endocrinol (Lausanne) ; 14: 1306550, 2023.
Article in English | MEDLINE | ID: mdl-38260150

ABSTRACT

Primary cilia (PC) are non-motile and microtube-based organelles protruding from the surface of almost all thyroid follicle cells. They maintain homeostasis in thyrocytes and loss of PC can result in diverse thyroid diseases. The dysfunction of structure and function of PC are found in many patients with common thyroid diseases. The alterations are associated with the cause, development, and recovery of the diseases and are regulated by PC-mediated signals. Restoring normal PC structure and function in thyrocytes is a promising therapeutic strategy to treat thyroid diseases. This review explores the function of PC in normal thyroid glands. It summarizes the pathology caused by PC alterations in thyroid cancer (TC), autoimmune thyroid diseases (AITD), hypothyroidism, and thyroid nodules (TN) to provide comprehensive references for further study.


Subject(s)
Hashimoto Disease , Hypothyroidism , Thyroid Neoplasms , Thyroid Nodule , Humans , Cilia
10.
Cancer ; 128(22): 3929-3942, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36197314

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) is a hematopoietic malignancy with a prognosis that varies with genetic heterogeneity of hematopoietic stem/progenitor cells (HSPCs). Induction chemotherapy with cytarabine and anthracycline has been the standard care for newly diagnosed AML, but about 30% of patients have no response to this regimen. The resistance mechanisms require deeper understanding. METHODS: In our study, using single-cell RNA sequencing, we analyzed the heterogeneity of bone marrow CD34+ cells from newly diagnosed patients with AML who were then divided into sensitive and resistant groups according to their responses to induction chemotherapy with cytarabine and anthracycline. We verified our findings by TCGA database, GEO datasets, and multiparameter flow cytometry. RESULTS: We established a landscape for AML CD34+ cells and identified HSPC types based on the lineage signature genes. Interestingly, we found a cell population with CRIP1high LGALS1high S100Ashigh showing features of granulocyte-monocyte progenitors was associated with poor prognosis of AML. And two cell populations marked by CD34+ CD52+ or CD34+ CD74+ DAP12+ were related to good response to induction therapy, showing characteristics of hematopoietic stem cells. CONCLUSION: Our study indicates the subclones of CD34+ cells confers for outcomes of AML and provides biomarkers to predict the response of patients with AML to induction chemotherapy.


Subject(s)
Induction Chemotherapy , Leukemia, Myeloid, Acute , Humans , Bone Marrow/pathology , Leukemia, Myeloid, Acute/therapy , Antigens, CD34/therapeutic use , Cytarabine/therapeutic use , Anthracyclines/therapeutic use
11.
Article in English | MEDLINE | ID: mdl-35839967

ABSTRACT

The glucocorticoid receptor (GR) forms a protein complex with FKBP51 that is increased in post-traumatic stress disorder (PTSD) and by fear conditioned learning. Disrupting the GR-FKBP51 complex with a synthetic peptide can block the storage or retrieval of fear conditioned memories, which could be a novel approach to the alleviate fear associated memory in PTSD. However, a potential unacceptable side effect could be the impairment of other types of memory. Thus, we investigated the effect of disrupting the GR-FKBP51 complex on recognition memory using the novel object and displaced object recognition tasks, spatial memory in the Morris water maze, and on social interaction in Crawley's three-chamber social interaction test. We did not observe adverse effects on these other types of memory and conclude that the GR-FKBP51 interaction remains a promising target for treating psychiatric disorders characterized by unwanted aversive memories such as in PTSD.


Subject(s)
Receptors, Glucocorticoid , Recognition, Psychology , Stress Disorders, Post-Traumatic , Tacrolimus Binding Proteins , Fear , Humans , Receptors, Glucocorticoid/metabolism , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/metabolism , Tacrolimus Binding Proteins/metabolism
12.
Mol Neurobiol ; 59(1): 405-419, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34705229

ABSTRACT

The cell-to-cell transmission of pathological α-synuclein (α-syn) has been proposed to be a critical event in the development of synucleinopathies. Recent studies have begun to reveal the underlying molecular mechanism of α-syn propagation. As one of the central steps, α-syn secretion is reported to be Ca2+-dependent and mediated by unconventional exocytosis. However, the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) requirement and vesicle identity of α-syn secretion remain elusive. Here we found that α-syn secretion is SNARE-dependent by systematically knocking down Q-SNAREs and R-SNAREs in exocytosis pathways. α-Syn secretion was mainly mediated by syntaxin 4 (STX4) and synaptosomal-associated protein 23 (SNAP23), but did not require STX1 and SNAP25, in differentiated SH-SY5Y cells. On the other hand, vesicle-associated membrane protein 3 (VAMP3), VAMP7, and VAMP8 were all involved in α-syn secretion, most likely in overlapping pathways. Application of super-resolution microscopy revealed localization of both endogenous and overexpressed α-syn in endosomes, lysosomes, and autophagosomes in rat primary cortical neurons. α-Syn co-localized with microtubule-associated protein 1 light chain 3 (LC3) most extensively, suggesting its tight association with the autophagy pathway. Consistently, α-syn secretion was regulated by the autophagy-lysosome pathway. Collectively, our data suggest that α-syn secretion is SNARE-dependent and is mediated by multiple vesicular pathways including exocytosis of recycling endosomes, multivesicular bodies, autophagosomes, and lysosomes.


Subject(s)
Exocytosis/physiology , Neurons/metabolism , SNARE Proteins/metabolism , Vesicular Transport Proteins/metabolism , alpha-Synuclein/metabolism , Animals , Autophagosomes/metabolism , Cell Line, Tumor , Endosomes/metabolism , Humans , Lysosomes/metabolism , Rats , Rats, Sprague-Dawley
13.
Drug Des Devel Ther ; 15: 4911-4924, 2021.
Article in English | MEDLINE | ID: mdl-34880601

ABSTRACT

PURPOSE: To explore the pharmacological mechanisms of Liuwei Dihuang Decoction (LWDHD) against intervertebral disc (IVD) degeneration (IVDD) via network pharmacology analysis combined with experimental validation. METHODS: First, active ingredients and related targets of LWDHD, as well as related genes of IVDD, were collected from public databases. The protein-protein interaction (PPI) network, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses were performed to predict the core targets and pathways of LWDHD against IVDD. Secondly, the IVDD model of mice treated with LWDHD was selected to validate the major targets predicted by network pharmacology. RESULTS: By searching the intersection of the active ingredient targets and IVDD targets, a total of 110 targets matched the related targets of 30 active ingredients in LWDHD and IVDD were retrieved. PPI network analysis indicated that 17 targets, including Caspase-3, IL-1ß, P53, etc., were hub targets. GO and KEGG enrichment analyses showed that the apoptosis pathway was enriched by multiple targets and served as the target for in vivo experimental study validation. The results of animal experiments revealed that LWDHD administration not only restored the decrease in disc height and abnormal degradation of matrix metabolism in IVDD mice but also reversed the high expression of Bax, Caspase-3, IL-1ß, P53, and low expression of Bcl-2, thereby inhibiting the apoptosis of IVD tissue and ameliorating the progression of IVDD. CONCLUSION: Using a comprehensive network pharmacology approach, our findings predicted the active ingredients and potential targets of LWDHD intervention for IVDD, and some major target proteins involved in the predictive signaling pathway were validated experimentally, which gave us a new understanding of the pharmacological mechanism of LWDHD in treating IVDD at the comprehensive level.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Intervertebral Disc Degeneration/drug therapy , Administration, Oral , Animals , Apoptosis/drug effects , Drugs, Chinese Herbal/administration & dosage , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/surgery , Medicine, Chinese Traditional , Mice , Mice, Inbred C57BL , Network Pharmacology
14.
Nanotechnology ; 32(47)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34384073

ABSTRACT

Lithium-sulfur battery is expected to become a new generation of commercial battery owing to its ultra-high theoretical specific capacity, low-cost, and environmental benign. However, the inherent insulation of sulfur and the shuttle effect of lithium polysulfide between electrodes limit the application of lithium-sulfur battery. In order to solve these problems, we focus on the design of carbon-sulfur composite structure. Herein, CS-CNTs homojunctions featured with the carbon nanotubes (CNTs)in situgrown on carbon sphere (CS) is designed and synthesized by simple polymerization and heat treatment. The composites of CS with interconnected pore networks and CNTs with high conductivity not only offer a conductive framework to promote fast electron transmission, but also provide a larger space to load sulfur and effectively capture polysulfides. The CS-CNTs@S cathode shows better electrochemical performance compared with CS-CPs@S and CS@S. The first discharge specific capacity is 1053 mAh g-1at 0.1 C. After 200 cycles, the specific capacity still remains at 427 mAh g-1.

15.
Onco Targets Ther ; 14: 177-186, 2021.
Article in English | MEDLINE | ID: mdl-33447059

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) and myelodysplastic syndrome (MDS) existing simultaneously in untreated patients is extremely rare. There have only been nine cases of untreated CLL concurrent with or followed by the development of MDS. Of all nine cases, four patients exhibited results of cytogenetic phonotypes all showing more than one abnormal chromosome karyotype. It is unknown whether or not these abnormal chromosome karyotypes change during the development of the disease. Meanwhile, the optimal treatment for the concurrence of CLL with MDS has yet to be identified. CASE PRESENTATION: A 69-year-old Chinese man diagnosed with co-existing CLL with MDS was observed from diagnosis, treatment, relapse to death during an admission period of a total of 158 days. Since being diagnosed with CLL and MDS, he was treated by decitabine and his condition went into remission for three months. Four laboratory tests showed an abnormal chromosome cytogenetic karyotype successively changed during the progression of the disease. CONCLUSION: It is the first time the abnormal chromosome karyotype variation significantly associated with the change of the illness was discovered. In the relapse and deterioration stages of the disease, there was t(9;22)(q24; q11.2); add(11)(p15) and other chromosome translocation. Repeated occurrence of TET2 mutation is special at this stage of the disease. Furthermore, decitabine could be beneficial for the treatment of the disease.

16.
Sci Rep ; 11(1): 772, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33437038

ABSTRACT

Aberrant mechanical factor is one of the etiologies of the intervertebral disc (IVD) degeneration (IVDD). However, the exact molecular mechanism of spinal mechanical loading stress-induced IVDD has yet to be elucidated due to a lack of an ideal and stable IVDD animal model. The present study aimed to establish a stable IVDD mouse model and evaluated the effect of aberrant spinal mechanical loading on the pathogenesis of IVDD. Eight-week-old male mice were treated with lumbar spine instability (LSI) surgery to induce IVDD. The progression of IVDD was evaluated by µCT and Safranin O/Fast green staining analysis. The metabolism of extracellular matrix, ingrowth of sensory nerves, pyroptosis in IVDs tissues were determined by immunohistological or real-time PCR analysis. The apoptosis of IVD cells was tested by TUNEL assay. IVDD modeling was successfully produced by LSI surgery, with substantial reductions in IVD height, BS/TV, Tb.N. and lower IVD score. LSI administration led to the histologic change of disc degeneration, disruption of the matrix metabolism, promotion of apoptosis of IVD cells and invasion of sensory nerves into annulus fibrosus, as well as induction of pyroptosis. Moreover, LSI surgery activated Wnt signaling in IVD tissues. Mechanical instability caused by LSI surgery accelerates the disc matrix degradation, nerve invasion, pyroptosis, and eventually lead to IVDD, which provided an alternative mouse IVDD model.


Subject(s)
Extracellular Matrix/metabolism , Intervertebral Disc Degeneration/pathology , Lumbar Vertebrae/pathology , Sensory Receptor Cells/pathology , Wnt Signaling Pathway , Animals , Disease Models, Animal , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/metabolism , Lumbar Vertebrae/metabolism , Male , Mice , Mice, Inbred C57BL , Pyroptosis , Sensory Receptor Cells/metabolism , Stress, Mechanical
17.
Front Endocrinol (Lausanne) ; 12: 841668, 2021.
Article in English | MEDLINE | ID: mdl-35154014

ABSTRACT

Osteoporosis (OP) is a common skeletal disease, characterized by decreased bone formation and increased bone resorption. As a novel Chinese medicine formula, Zhuanggu Busui formula (ZGBSF) has been proved to be an effective prescription for treating OP in clinic, however, the pharmacological mechanisms underlying the beneficial effects remain obscure. In this study, we explored the pharmacological mechanisms of ZGBSF against OP via network pharmacology analysis coupled with in vivo experimental validation. The results of the network pharmacology analysis showed that a total of 86 active ingredients and 164 targets of ZGBSF associated with OP were retrieved from the corresponding databases, forming an ingredient-target-disease network. The protein-protein interaction (PPI) network manifested that 22 core targets, including Caspase-3, BCL2L1, TP53, Akt1, etc, were hub targets. Moreover, functional enrichment analyses revealed that PI3K-Akt and apoptosis signalings were significantly enriched by multiple targets and served as the targets for in vivo experimental study validation. The results of animal experiments revealed that ZGBSF not only reversed the high expression of Caspase-3, Bax, Prap, and low expression of Bcl-2 in osteoblasts of the OP mouse model but also contributed to the phosphorylation of Akt1 and expression of PI3K, thereby promoting osteogenesis and ameliorating the progression of OP. In conclusion, this study systematically and intuitively illustrated that the possible pharmacological mechanisms of ZGBSF against OP through multiple ingredients, targets, and signalings, and especially the inhibition of the apoptosis and the activation of PI3K-Akt signaling.


Subject(s)
Drugs, Chinese Herbal , Osteoporosis , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Network Pharmacology , Osteoporosis/drug therapy , Phosphatidylinositol 3-Kinases , Protein Interaction Maps
18.
Neurosci Lett ; 739: 135402, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32976921

ABSTRACT

Synaptotagmin-11 (Syt11) is associated with schizophrenia and Parkinson's disease (PD) and is a critical substrate of parkin, an E3 ubiquitin ligase linked to PD. Previously we reported that Syt11 regulates multiple membrane trafficking pathways in neurons and glia. However, the regulation of Syt11 degradation remains largely unknown. As the ubiquitin-proteasome pathway (UPP) plays crucial roles in protein degradation and quality control, we investigated UPP-dependent Syt11 degradation in this study. We found that Syt11 is a short-lived protein with a half-life of 1.49 h in the presence of a protein synthesis inhibitor cycloheximide and is mainly degraded by UPP in neurons. The degradation was further accelerated under sustained neuronal activity and was parkin-dependent. Interestingly, Syt11 had a faster turnover in astrocytes with a half-life of 0.58 h, and UPP partially contributed to its degradation. Mechanical stress applied on astrocytes by hypoosmotic treatment led to reduced Syt11 protein level but increased parkin level. However, the degradation of Syt11 was parkin-independent under both isoosmotic and hypoosmotic condition. Altogether, our results revealed active and distinct proteolytic regulation of Syt11 in neurons and astrocytes.


Subject(s)
Astrocytes/metabolism , Cerebral Cortex/metabolism , Hippocampus/metabolism , Neurons/metabolism , Proteolysis , Synaptotagmins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Female , Male , Mice , Primary Cell Culture , Proteasome Endopeptidase Complex/metabolism , Ubiquitination
19.
Hum Immunol ; 81(10-11): 606-613, 2020.
Article in English | MEDLINE | ID: mdl-32981742

ABSTRACT

Inflammation plays a crucial role in the initiation, progression and prognosis of Philadelphia chromosome-negative myeloproliferative neoplasms (MPN), which could be clinically subdivided into polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). Nucleotide binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasomes affect inflammatory diseases and carcinomas by excessive production of cytokines. To investigate a possible association of NLRP3 inflammasome signaling with MPN, we investigated the expression of selected inflammasome-related genes from bone marrow cells of 67 MPN patients as well as gene polymorphisms in NLRP3 (rs35829419), NF-κB1 (rs28362491), CARD8 (rs2043211), IL-1ß (rs16944), and IL-18 (rs1946518). It showed that inflammasome-related genes (NLRP3, NF-κB1, CARD8, IL-1ß, and IL-18) were highly expressed in BM cells from MPN patients and the increased expression was associated with JAK2V617F mutation, white blood cell counts and splenomegaly. Analysis of genetic polymorphisms in 269 MPN patients and 291 healthy controls demonstrated that NF-κB1 (rs28362491) was associated with MPN and increased expression of NF-κB1, NLRP3 and IL-1ß. This research provided novel biomarkers and potential targets for MPN.


Subject(s)
Gene Expression , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Philadelphia Chromosome , Polycythemia Vera/genetics , Polymorphism, Single Nucleotide , Primary Myelofibrosis/genetics , Thrombocythemia, Essential/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Case-Control Studies , Female , Genetic Predisposition to Disease , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Male , Middle Aged , NF-kappa B p50 Subunit/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polycythemia Vera/metabolism , Primary Myelofibrosis/metabolism , Thrombocythemia, Essential/metabolism , Young Adult
20.
Front Cell Neurosci ; 14: 159, 2020.
Article in English | MEDLINE | ID: mdl-32595456

ABSTRACT

Recent studies suggest that the cell-to-cell spread of pathological α-synuclein (α-syn) plays important roles in the development of Parkinson's disease (PD). PD patients who carry α-syn gene mutations often have an earlier onset and more severe clinical symptoms and pathology than sporadic PD cases who carry the wild-type (WT) α-syn gene. However, the molecular mechanism by which α-syn gene mutations promote PD remains unclear. Here, we hypothesized that pathogenic mutations facilitate the intercellular transfer and cytotoxicity of α-syn, favoring an early disease onset and faster progression. We investigated the effects of eight known pathogenic mutations in human α-syn (A18T, A29S, A30P, E46K, H50Q, G51D, A53E, and A53T) on its pathological transmission in terms of secretion, aggregation, intracellular level, cytotoxicity, seeding, and induction of neuroinflammation in SH-SY5Y neuroblastoma cells, cultured rat neurons, and microglia, and the rat substantia nigra pars compacta. We found that 2 of the 8 mutations (H50Q and A53T) significantly increased α-syn secretion while 6 mutations (A18T, A29S, A30P, G51D, A53E, and E46K) tended to enhance it. In vitroα-syn aggregation experiments showed that H50Q promoted while G51D delayed aggregation most strongly. Interestingly, 3 mutations (E46K, H50Q, and G51D) greatly increased the intracellular α-syn level when cultured cells were treated with preformed α-syn fibrils (PFFs) compared with the WT, while the other 5 had no effect. We also demonstrated that H50Q, G51D, and A53T PFFs, but not E46K PFFs, efficiently seeded in vivo and acutely induced neuroinflammation in rat substantia nigra pars compacta. Our data indicate that pathogenic mutations augment the prion-like spread of α-syn at different steps and blockade of this pathogenic propagation may serve as a promising therapeutic intervention for PD.

SELECTION OF CITATIONS
SEARCH DETAIL