Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 168720, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38008321

ABSTRACT

Nitrate (NO3-)-reducing Fe(II) oxidation (NRFO) is prevalent in anoxic environments. However, it is uncertain in which step(s) the biological Fe(II) oxidation is coupled with denitrification during NRFO. In this study, a heterotrophic NRFO bacterium, Diaphorobacter caeni LI3T, was isolated from paddy soil and used to investigate the transformation of Fe(II) and nitrogen as well as nitrogen isotopic fractionation (δ15N-N2O) during NRFO. Fe(II) oxidation was observed in the Cell+NO3- +Fe(II), Cell+NO2- + Fe(II), and NO2- + Fe(II) treatments, resulting in precipitation of amorphous Fe(III) minerals and lepidocrocite on the surface and in the periplasm of cells. The presence of Fe(II) slightly accelerated microbial NO3- reduction in the Cell+NO3- + Fe(II) treatment relative to the Cell+NO3- treatment, but slowed down the NO2- reduction in the Cell+NO2- + Fe(II) treatment relative to the Cell+NO2- treatment likely due to cell encrustation that blocking microbial NO2- reduction in the periplasm. The δ15N-N2O results in the Cell+NO3- + Fe(II) treatment were close to those in the Cell+NO3- and Cell+NO2- treatments, indicating that the accumulative N2O is primarily of biological origin during NRFO. The genome analysis found a complete set of denitrification and oxidative phosphorylation genes in strain LI3T, the metabolic pathways of which were closely related with cyc2 and cytc as indicated by protein-protein interactions network analysis. It is proposed that Fe(II) oxidation is catalyzed by the outer membrane protein Cyc2, with the resulting electrons being transferred to the nitrite reductase NirS via CytC in the periplasm, and the CytC can also accept electrons from the oxidative phosphorylation in the cytoplasmic membrane. Overall, our findings provide new insights into the potential pathways of biological Fe(II) oxidation coupled with nitrate reduction in heterotrophic NRFO bacteria.


Subject(s)
Ferric Compounds , Nitrates , Nitrates/metabolism , Ferric Compounds/metabolism , Nitrites/metabolism , Nitrogen Isotopes , Nitrogen Dioxide/metabolism , Oxidation-Reduction , Bacteria/metabolism , Nitrogen/metabolism , Ferrous Compounds/metabolism , Denitrification
2.
Chin Med J (Engl) ; 129(15): 1845-9, 2016 Aug 05.
Article in English | MEDLINE | ID: mdl-27453235

ABSTRACT

BACKGROUND: During craniotomies using the transpetrosal-presigmoid approach, exposure of the sigmoid sinus remains an essential but hazardous step. In such procedures, accurate localization of the anterosuperior point of the transverse-sigmoid sinus junction (ASTS) is very important for reducing surgical morbidity. This study aimed to create an accurate and practical method for identifying the ASTS. METHODS: On the lateral surfaces of 40 adult skulls (19 male skulls and 21 female skulls), a rectangular coordinate system was defined to measure the x and y coordinates of two points: the ASTS and the squamosal-parietomastoid suture junction (SP). With the coordinate system, the distribution characteristics of the ASTS were statistically analyzed and the differences between the ASTS and SP were investigated. RESULTS: For ASTS-x, significant differences were found in different sides (P = 0.020); the ASTS-x in male skulls was significantly higher on the right side (P = 0.017); there was no significant difference between the sides in female skulls. There were no significant differences in gender or interaction of gender and side for ASTS-x, and for ASTS-y, there were no significant differences in side, gender, or interaction of gender and side. For both sides combined, the mean ASTS-x was significantly higher than the mean SP-x (P = 0.003) and the mean ASTS-y was significantly higher than the mean SP-y (P = 0.011). CONCLUSIONS: This reference coordinate system may be an accurate and practical method for identifying the ASTS during presigmoid craniotomy. The SP might be difficult to find during presigmoid craniotomy and, therefore, it is not always a reliable landmark for defining the ASTS.


Subject(s)
Cranial Sinuses/anatomy & histology , Skull/anatomy & histology , Adult , Craniotomy , Female , Humans , Male , Middle Aged , Transverse Sinuses/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL