Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Nature ; 628(8008): 639-647, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570691

ABSTRACT

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3' ends of CRISPR-Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3' ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3' ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein.


Subject(s)
Gene Editing , RNA-Binding Proteins , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , K562 Cells , Poly U/genetics , Poly U/metabolism , RNA Polymerase III/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , RNA-Binding Proteins/metabolism
2.
Neuroendocrinology ; : 1-10, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38679006

ABSTRACT

INTRODUCTION: Previous brain studies of growth hormone deficiency (GHD) often used single-modal neuroimaging, missing the complexity captured by multimodal data. Growth hormone affects gut microbiota and metabolism in GHD. However, from a gut-brain axis (GBA) perspective, the relationship between abnormal GHD brain development and microbiota alterations remains unclear. The ultimate goal is to uncover the manifestations underlying GBA abnormalities in GHD and idiopathic short stature (ISS). METHODS: Participants included 23 GHD and 25 ISS children. The fusion independent component analysis was applied to integrate multimodal brain data (high-resolution structural, diffusion tensor, and resting-state functional MRI) covering regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and white matter fractional anisotropy (FA). Gut microbiome diversity and metabolites were analyzed using 16S sequencing and proton nuclear magnetic resonance (1H-NMR). Associations between multimodal neuroimaging and cognition were assessed using moderation analysis. RESULTS: Six independent components (IC) of ReHo, ALFF, and FA differed significantly between GHD and ISS patients, with three functional components linked to the processing speed index. GHD individuals showed higher levels of acetate, nicotinate, and lysine in microbiota metabolism. Higher alpha diversity in GHD strengthened connections between ReHo-IC1, ReHo-IC5, ALFF-IC1, and the processing speed index, while increasing agathobacter levels in ISS weakened the link between ALFF-IC1 and the speech comprehension index. CONCLUSIONS: Our findings uncover differing brain structure and functional fusion in GHD, alongside microbiota metabolism of short-chain fatty acids. Additionally, microbiome influences connections between neuroimaging and cognition, offering insight into diverse GBA patterns in GHD and ISS, enhancing our understanding of the disease's pathophysiology and interventions.

3.
Plant Sci ; 309: 110954, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34134849

ABSTRACT

Powdery mildew caused by Podosphaera xanthii (P. xanthii) severely endangers melon (Cucumis melo L.) production, while the mechanistic understanding about its resistance to powdery mildew remains largely limited. In this study, we integrated transcriptomic and methylomic analyses to explore whether DNA methylation was involved in modulating transcriptional acclimation of melon to P. xanthii infection. Net photosynthetic rate (Pn), stomatal conductance (Gs), actual photochemical efficiency (ФPSII) and maximum PSII quantum yield (Fv/Fm) were significantly decreased in P. xanthii-infected plants relative to uninfected ones (Control), revealing apparent physiological disorders. Totally 4808 differentially expressed genes (DEGs) were identified by global analysis of gene expression in Control and P. xanthii-infected plants. Comparative methylome uncovered that 932 DEGs were associated with hypermethylation, while 603 DEGs were associated with hypomethylation in melon upon P. xanthii infection. Among these differential methylation-involved DEGs, a set of resistance-related genes including R genes and candidate genes in metabolic and defense pathways were further identified, demonstrating that DNA methylation might function as a new regulatory layer for melon resistance to P. xanthii infection. Altogether our study sheds new insights into the molecular mechanisms of melon against powdery mildew and provides some potential targets for improving melon disease resistance in future.


Subject(s)
Ascomycota/physiology , Cucurbitaceae/genetics , Epigenome , Plant Diseases/immunology , Cucurbitaceae/immunology , Cucurbitaceae/microbiology , DNA Methylation , Plant Diseases/microbiology
4.
Shanghai Kou Qiang Yi Xue ; 13(6): 553-6, 2004 Dec.
Article in Chinese | MEDLINE | ID: mdl-15619704

ABSTRACT

PURPOSE: To investigate the effect of staining method and sintering temperature on the color of porcelain-fused-metal restorations. METHODS: 40 cylindrical stained porcelain-metal specimens of 15 mm in diameter and 6 mm in height were fabricated with customized mould, consisting of 2 mm Ni-Cr metal, 1 mm opaque porcelain, 2 mm dentine porcelain and 1 mm enamel porcelain. The specimens were prepared by 5 techniques, 8 for each group. Group A: internal staining, Group B: external staining, 900 degrees centigrade sintering temperature was used in both A and B group; Group C to E: external staining, with the sintering temperature of 880 degrees centigrade, 900 degrees centigrade and 920 degrees centigrade respectively. Sofu A2 porcelain and Sofu 44 stain system were used for the study. Using standard white plate as a reference, colors (L*,a*,b* coordinates) of the specimens were measured with a computerized colorimeter. Student's t test and one way ANOVA were used to analyze the data. RESULTS: DeltaE, b* and Delta C(ab)* of Group B (external staining) and group A (internal staining) were 43.72 +/- 2.99/26.51 +/- 1.64/31.31 +/- 2.48 and 39.71 +/- 1.78/23.69 +/- 0.36/26.55 +/- 2.16, respectively. The values of the former group were significantly higher than that of the latter (P < 0.05); For Group C to E, there were no significant differences in all the color parameters. CONCLUSIONS: Staining method has a significant effect on the color parameters of porcelain-fused-to-metal restorations; For external staining, within the clinically-used range, changing the sintering temperature does not have an obvious effect on the color.


Subject(s)
Dental Porcelain , Dental Restoration Repair , Metal Ceramic Alloys/chemistry , Temperature , Color , Colorimetry , Gold Alloys , Humans , Materials Testing , Metals , Palladium , Staining and Labeling , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...