Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 13: 929299, 2022.
Article in English | MEDLINE | ID: mdl-35903222

ABSTRACT

Reactive oxygen species (ROS) play important regulatory roles in plant growth and development, as well as in cell differentiation and stress responses. Respiratory burst oxidase homolog (RBOH) is the key enzyme in ROS production. So far, the Rboh family genes in Pyropia yezoensis have not been comprehensively characterized, and whether their function was involved in the formation of archeospores is still unknown. In this study, a total of 11 PyRboh genes were identified from the P. yezoensis genome by homology mining. Through phylogenetic analysis, it is suggested that the PyRboh genes were evolutionarily conserved among the lineages of red algae, but a few genes exhibited a species-specific manner. The treatment of P. yezoensis blades with NADPH oxidase inhibitor diphenylene iodonium (DPI) could significantly inhibit the formation of archeospores, suggesting that RBOH may be involved in the formation of archeospores. According to PyRboh gene expression analysis using the P. yezoensis strains with obvious differences in releasing archeospores, it is showed that the expression trends of most genes were consistent, with no significant difference between strains, whereas the expression pattern of the two P. yezoensis-specific genes (PyRbohJ and PyRbohK) was positively correlated with the amount of archeospores. Furthermore, as treatment of blades with allantoin resulted in a significant increase in the release of archeospores, the expression levels of PyRbohJ and PyRbohK were also consistently upregulated, further confirming the relationship between the two genes and archeospore formation. These findings provide insights into the molecular mechanism of P. yezoensis archeospore formation.

2.
PLoS One ; 8(8): e73414, 2013.
Article in English | MEDLINE | ID: mdl-23991194

ABSTRACT

Pyropia haitanensis has a biphasic life cycle with macroscopic gametophytic blade (n) and microscopic filamentous conchocelis (2n) phase. Its gametophytic blades have long been believed to be mainly dioecious. However, when crossing the red mutant (R, ♀) with the wild type (W, ♂), the parental colors were segregated in F1 blades, of which 96.1% were linearly sectored with 2-4 color sectors. When color sectors were excised from the color-sectored blades and cultured singly, 99.7% of the color sectors appeared to be unisexual with an equal sex ratio. Although the sex of color sector did not genetically link with its color, the boundaries of both sex and color sectors coincided precisely. About 87.9% of the examined color-sectored blades were monoecious and the percentage increased with the number of color sectors of a blade. The gametophytic blades from each conchocelis strain produced by parthenogenesis of the excised color sectors were unisexual and unicolor, showing the same sex and color as their original sectors. These results indicate that most of the sexually reproduced Py. haitanensis blades are monoecious, and their sex is controlled by segregation of a pair of alleles during meiosis of conchospore, forming a sex-sectored tetrad. During the subsequent development of blades, one or two lower cell(s) of the tetrad contribute mainly to rhizoid formation, and rarely show their sexual phenotype, leading to reduced frequency of full sex phenotype of the meiotic blades. Moreover, the aberrant segregations of sex genes or color genes in a few of F1 blades were probably due to gene conversions, but there was no sex transfer in Py. haitanensis.


Subject(s)
Rhodophyta/physiology , Sex Determination Analysis , Color , Germ Cells, Plant , Rhodophyta/genetics
3.
Fish Physiol Biochem ; 37(3): 433-45, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21046236

ABSTRACT

The effects of different lipids on tissue fatty acid profile and reproductive performance in female rice field eel were investigated in this study. Virgin female eels were fed with six diets containing different lipids (diets FO, LO, SO, PO and PL with fish oil, linseed oil, soybean oil, peanut oil and pork lard, respectively; diet APO with arachidonic acid and peanut oil). The results showed that there were positive correlations between the contents of 18:2n-6, 18:3n-3, arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the tissues of eels and those of the corresponding fatty acids in their diets. The specific growth rate of eels fed with diet PO was the lowest and significantly lower than that of FO and SO. Gonad of eels fed with diets PO and PL showed hypogonadism. The long chain polyunsaturated fatty acids (LC-PUFA) can be synthesized by eels, but the quantity was not enough to meet their reproduction requirement completely. The fatty acid desaturation, rather than elongation probably was one of the limiting factors. Addition of proper amount of ARA in diet was favorable to the increase of the hatching rate of fertilized eggs, while EPA and DHA in diet were beneficial to the increase of the survival rate of larva. Both n-3PUFA and a suitable n-6/n-3PUFA ratio were necessary for growth and reproduction of eels.


Subject(s)
Diet/veterinary , Dietary Fats, Unsaturated/pharmacology , Eels/growth & development , Eels/physiology , Lipids/chemistry , Reproduction/drug effects , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Dietary Fats, Unsaturated/administration & dosage , Fatty Acids/blood , Female , Lipid Metabolism , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL