Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38470753

ABSTRACT

Violet phosphorus (VP), a novel two-dimensional (2D) nanomaterial, boasts structural anisotropy, a tunable optical bandgap, and superior thermal stability compared with its allotropes. Its multifunctionality has sparked widespread interest in the community. Yet, the VP's air susceptibility impedes both probing its intrinsic features and device integration, thus making it of urgent significance to unveil the degradation mechanism. Herein, we conduct a comprehensive study of photoactivated degradation effects on VP. A nitrogen annealing method is presented for the effective elimination of surface adsorbates from VP, as evidenced by a giant surface-roughness improvement from 65.639 nm to 7.09 nm, enabling direct observation of the intrinsic morphology changes induced by photodegradation. Laser illumination demonstrates a significant thickness-thinning effect on VP, manifested in the remarkable morphological changes and the 73% quenching of PL intensity within 160 s, implying its great potential for the efficient selected-area etching of VP at high resolution. Furthermore, van der Waals passivation of VP using 2D hexagonal boron nitride (hBN) was achieved. The hBN-passivated channel exhibited improved surface roughness (0.512 nm), reduced photocurrent hysteresis, and lower responsivity (0.11 A/W @ 450 nm; 2 µW), effectively excluding adsorbate-induced electrical and optoelectrical effects while disabling photodegradation. Based on our experimental results, we conclude that three possible factors contribute to the photodegradation of VP: illumination with photon energy higher than the bandgap, adsorbed H2O, and adsorbed O2.

2.
ChemSusChem ; 16(2): e202201721, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36456525

ABSTRACT

Durability is crucial for the long-term application of cathode oxygen reduction reaction (ORR) catalysts in fuel cells. In this work, sulfur was successfully doped into reduced graphene oxide (rGO) aerogels to achieve the formation of 1T/2H hybrid phase MoS2 , obtaining MoS2 @S-rGO-300 composite ORR catalyst support. After loading ultrafine Pt nanoparticles, Pt/MoS2 @S-rGO-300 showed not only an enhanced ORR activity, but also a significantly improved stability after 10000 cycles. The mass activity retention for Pt/MoS2 @S-rGO-300 after cycles reached 89.94 %, while that of Pt/rGO was only 37.44 %. Density functional theory calculations revealed that the enlarged binding energy between Pt atoms and MoS2 @S-rGO-300 led to the prevention of Pt agglomeration as well as Ostwald ripening.

3.
Materials (Basel) ; 13(20)2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33081251

ABSTRACT

B4C-TiB2 composite ceramics with ultra-high fracture toughness were successfully prepared via spark plasma sintering (SPS) at 1900 °C using B4C and Ti3SiC2 as raw materials. The results showed that compared with pure B4C ceramics sintered by SPS, the hardness of B4C-TiB2 composite ceramics was decreased, but the flexural strength and fracture toughness were significantly improved; the fracture toughness especially was greatly improved. When the content of Ti3SiC2 was 30 vol.%, the B4C-TiB2 composite ceramic had the best comprehensive mechanical properties: hardness, bending strength and fracture toughness were 27.28 GPa, 405.11 MPa and 18.94 MPa·m1/2, respectively. The fracture mode of the B4C-TiB2 composite ceramics was a mixture of transgranular fracture and intergranular fracture. Two main reasons for the ultra-high fracture toughness were the existence of lamellar graphite at the grain boundary, and the formation of a three-dimensional interpenetrating network covering the whole composite.

SELECTION OF CITATIONS
SEARCH DETAIL
...