Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Curr Med Chem ; 31(26): 4100-4110, 2024.
Article in English | MEDLINE | ID: mdl-38275064

ABSTRACT

The application of therapeutic peptides in clinical practice has significantly progressed in the past decades. However, immunogenicity remains an inevitable and crucial issue in the development of therapeutic peptides. The prediction of antigenic peptides presented by MHC class II is a critical approach to evaluating the immunogenicity of therapeutic peptides. With the continuous upgrade of algorithms and databases in recent years, the prediction accuracy has been significantly improved. This has made in silico evaluation an important component of immunogenicity assessment in therapeutic peptide development. In this review, we summarize the development of peptide-MHC-II binding prediction methods for antigenic peptides presented by MHC class II molecules and provide a systematic explanation of the most advanced ones, aiming to deepen our understanding of this field that requires particular attention.


Subject(s)
Computer Simulation , Histocompatibility Antigens Class II , Peptides , Peptides/chemistry , Peptides/immunology , Humans , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Algorithms , Animals
2.
Angew Chem Int Ed Engl ; 62(35): e202307874, 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37408177

ABSTRACT

Modulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV-GDY-FO) as anode materials. The goal is to motivate lithium-ion batteries (LIBs) toward ultra-high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3 O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium-ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium-ion storage. The optimized electrode IV-GDY-FO reveals a capacity of 2084.1 mAh g-1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g-1 even at 10 C.

3.
Healthcare (Basel) ; 11(8)2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37108021

ABSTRACT

Although many studies have differentiated complex posttraumatic stress disorder (CPTSD) from posttraumatic stress disorder (PTSD), few studies have explored the differences in positive adaptation between the two. The present study aimed to determine whether there are distinctions between PTSD and CPTSD in hedonic and eudaimonic well-being. The present study used a Chinese young adult sample with childhood adversity experiences (n = 1451), including 508 males and 943 females, with an average age of 20.07 years (SD = 1.39). PTSD and CPTSD symptoms were measured by the International Trauma Questionnaire. Eudaimonic well-being was measured by the Meaning in Life Questionnaire, and hedonic well-being, including life satisfaction and happiness, was assessed by the Satisfaction with Life Scale and the face scale. Analysis of variance showed that the CPTSD group had lower hedonic and eudaimonic well-being than the PTSD group. Moreover, hierarchical regression analysis showed that disturbances in self-organization (DSO) symptoms in CPTSD were negatively associated with hedonic and eudaimonic well-being, while PTSD was positively associated with eudaimonic well-being. These findings indicate that the core symptoms of CPTSD might hinder individuals from living fulfilling lives. The positive association between eudaimonic well-being and PTSD symptoms may be a manifestation of posttraumatic growth. Based on the perspective of positive adaptation, these results provide new evidence of the importance of considering CPTSD as an independent diagnosis and suggest that future well-being interventions should be implemented in people with DSO symptoms.

4.
J Am Chem Soc ; 145(5): 2759-2764, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36579966

ABSTRACT

A continuous humidity and solar-light dual responsive intelligent solid Mg-moisture battery (SMB) with a graphdiyne nanosheets array was fabricated. The integrated battery works based on a new concept of chemical bond conversion on the surface of the graphdiyne nanosheets array that is grown in situ on a 3D melamine sponge (GDY/MS). The unique structure, excellent catalytic, and semiconductor performance of GDY endows the GDY/MS with some outstanding characteristics on trapping and transferring water molecules, catalyzing HER, and utilizing solar energy, making the GDY/MS a new generation cathode for a high-performance intelligent SMB. The performance of the GDY/MS-based smart SMB (GSMB) can be continuously tuned by humidity and solar-light. The GSMB shows a significant positive correlation between open circuit potential (OCP) and humidity, while the natural band gap of GDY makes it further act as a photoelectrode to capture light and generate photoelectrons. The GSMB can be applied as a self-power humidity monitor with an ultrafast response time of <0.24 s, a recovery time of <0.16 s, and a sensitive (36,600%) respiratory sensing performance. This simple and efficient battery-made strategy represents the future development direction of self-power supply equipment, intelligent electronic devices, and intelligent battery integration.

5.
ACS Appl Mater Interfaces ; 14(18): 20358-20367, 2022 May 11.
Article in English | MEDLINE | ID: mdl-34460231

ABSTRACT

A non-noble-metal hybrid catalyst (Ni2P/NPC-P), composed of N,P-doped porous carbon decorated with surface P-enriched Ni2P nanoparticles, is developed to address the urgent challenges associated with mass production of clean hydrogen fuel. The synthesis features one-pot pyrolysis of inexpensive fluid catalytic cracking slurry, graphitic carbon nitride, and inorganic salts, followed by a feasible surface phosphidation process. As a non-noble metal catalyst, Ni2P/NPC-P demonstrates excellent performance in hydrogen evolution reaction in alkaline electrolytes with a low overpotential of 73 mV at a current density of 10 mA cm-2 (η10) and a small Tafel slope of 56 mV dec-1, meanwhile exhibits durability with no significant η10 change after 2000 catalytic cycles. Theoretical calculation reveals that the negatively charged P-enriched surface accelerated the rate-determining transformation and desorption of OH*. In overall water splitting, the electrocatalyst achieves a low η10 of 1.633 V, promising its potential in the cost-effective mass production of hydrogen fuel.

6.
Chemosphere ; 167: 178-187, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27718430

ABSTRACT

A series of alkyl bicarbamates supramolecular organogelators were synthesized with different structures and lengths of alkyl chains. The driving forces for the self-assembly of small molecules, including the intermolecular H bonding, π-π stacking and van der Waals interactions, played an important role in the formation of different 3D network structures, i.e., fibers, ribbons, sheets, and prisms. And a probable formation process of the gel networks was proposed. Furthermore, the phase-selective gelling performances were investigated for oil removal from aqueous solution. Interestingly, the gelling properties were found to be affected by the length and structure of alkyl chains, while some gelators with intermediate alkyl chain lengths could effectively gel all the tested oils from water surface within 15 min, such as Russian crude oil, diesel, gasoline, soybean oil, peanut oil, olive oil, cyclohexane, hexane and ethyl acetate. Advantageously, fast gelation, high rate of oil removal (>95%) and excellent oil retention rate (close to 100%) were realized in the recovery of oil spills from water surface. This kind of supramolecular gelators demonstrates good potential applications in the delivery or removal of organic pollution from oil/water mixtures.


Subject(s)
Carbamates/chemistry , Environmental Restoration and Remediation/methods , Gels/chemistry , Oils/chemistry , Oils/isolation & purification , Water/chemistry , Petroleum Pollution , Russia
7.
Chemosphere ; 163: 610-619, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27587327

ABSTRACT

Supramolecular cross-linked porous lignin based poly (acrylic acid) [LBPAA] was lab-synthesized by copolymerizing lignin grafted N, N'-methylene-bisacrylamide (LM) and acrylic acid. LBPAA successfully acted as a water retention agent with salt resistance and biodegradation for agricultural applications. Lignin was found to improve its swelling behaviors with higher water retention, fast swelling and de-swelling rates. The salt tolerance was stronger in the case of LBPAA (60 PAA/40 LM) [60 wt% PAA/40 wt% LM], i.e., 145.79 g·g(-1) higher than PAA at 0.09 mM KCl solution. The effect of ion charges on the LBPAA swelling ratio was greater than that of ionic radius. The weight loss of LBPAA (60 PAA/40 LM) was 5.47%, 4.96%, and 4.56% in the soil of Tangshan, Harbin, and Sian, respectively. The soil moisture content and clay content were observed to decrease gradually with increasing the burial time. The biodegradation test of LBPAA (60 PAA/40 LM) composite exhibited different bacterial colony forming units (CFU), the soil of Tangshan was 2.0 × 10(3) CFU·g(-1) soil, 7.0 × 10(3) CFU·g(-1) soil for Harbin, and 6.10 × 10(4) CFU·g(-1) soil for Sian. However, the organic matter contents in the soils did not have significant changes (Tangshan 6.21 mg·g(-1), Harbin 0.61 mg·g(-1), and Sian 0.405 mg·g(-1)).


Subject(s)
Acrylic Resins/chemistry , Lignin/chemistry , Polymers/chemistry , Soil/chemistry , Biodegradation, Environmental , Polymerization , Porosity , Solutions
8.
Nanoscale ; 8(26): 12977-89, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27304516

ABSTRACT

Thermoplastic polyurethane (TPU) based conductive polymer composites (CPCs) with a reduced percolation threshold and tunable resistance-strain sensing behavior were obtained through the addition of synergistic carbon nanotubes (CNT) and graphene bifillers. The percolation threshold of graphene was about 0.006 vol% when the CNT content was fixed at 0.255 vol% that is below the percolation threshold of CNT/TPU nanocomposites. The synergistic effect between graphene and CNT was identified using the excluded volume theory. Graphene acted as a 'spacer' to separate the entangled CNTs from each other and the CNT bridged the broad gap between individual graphene sheets, which was beneficial for the dispersion of CNT and formation of effective conductive paths, leading to better electrical conductivity at a lower conductive filler content. Compared with the dual-peak response pattern of the CNT/TPU based strain sensors, the CPCs with hybrid conductive fillers displayed single-peak response patterns under small strain, indicating good tunability with the synergistic effect of CNT and graphene. Under larger strain, prestraining was adopted to regulate the conductive network, and better tunable single-peak response patterns were also obtained. The CPCs also showed good reversibility and reproductivity under cyclic extension. This study paves the way for the fabrication of CPC based strain sensors with good tunability.

9.
ACS Appl Mater Interfaces ; 8(22): 14150-9, 2016 Jun 08.
Article in English | MEDLINE | ID: mdl-27172292

ABSTRACT

Electrospun polyamide (PA) 66 nanofiber bundles with high conductivity, improved strength, and robust flexibility were successfully manufactured through simply adsorbing multiwall carbon nanotubes (MWNTs) on the surface of electrospun PA66 nanofibers. The highest electrical conductivity (0.2 S/cm) and tensile strength (103.3 MPa) were achieved for the bundles immersed in the suspension with 0.05 wt % MWNTs, indicating the formation of conductive network from adsorbed MWNTs on the surface of PA66 nanofibers. The decrease of porosity for the bundles immersed in the MWNT dispersion and the formation of hydrogen bond between PA66 nanofibers and MWNTs suggest a superb interfacial interaction, which is responsible for the excellent mechanical properties of the nanocomposite bundles. Furthermore, the resistance fluctuation under bending is less than 3.6%, indicating a high flexibility of the nanocomposite bundles. The resistance of the nanocomposite bundle had a better linear dependence on the temperature applied between 30 and 150 °C. More importantly, such highest working temperature of 150 °C far exceeded that of other polymer-based temperature sensors previously reported. This suggests that such prepared MWNTs-adsorbed electrospun PA66 nanofiber bundles have great potentials in high temperature detectors.

10.
Chemosphere ; 153: 485-93, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27035386

ABSTRACT

Due to tremendous resource wastes and great harm to ecological environment caused by the accidental oil spills, an alkyl bicarbamate supramolecular oil gelator was synthesized and applied to selectively gelate oils from oil/water mixtures. Interestingly, the oil gelator could be self-assembled in a series of organic solvents, i.e., edible oils and fuel oils to form 3D networks and then turned into thermally reversible organogels, allowing easy separation and removal of oil spills from oil/water mixtures. The possible self-assembly mode for the formation of organogels was proposed. What's more, the optimal conditions for using the oil gelator to recover oils were experimentally determined. Inspiringly, taking gasoline as the co-congealed solvent, a complete gelation of oil phase was achieved within 15 min with high oil removal rate and oil retention rate after convenient salvage and cleanup of oil gels from oil/water mixtures. The oil gelator had some advantages in solidifying oil spills on water surface, exhibiting fast oil gelation, convenient and thorough oil removal and easy recovery. This work illustrates the significant role of oil gelators in the potential cleanup of spilled oils for water purification.


Subject(s)
Environmental Restoration and Remediation/methods , Petroleum Pollution , Toluene 2,4-Diisocyanate/chemistry , Water Pollution , Water Purification/methods , Gels/chemistry , Oils/chemistry , Organic Chemicals/chemistry , Solvents/chemistry , Water
11.
ACS Appl Mater Interfaces ; 7(11): 6125-38, 2015 Mar 25.
Article in English | MEDLINE | ID: mdl-25719265

ABSTRACT

Polypropylene (PP)/carbon nanotubes (CNTs) nanocomposites were prepared by coating CNTs on the surface of gelated/swollen soft PP pellets. The electrical conductivity (σ) studies revealed a percolation threshold of only 0.3 wt %, and the electrical conductivity mechanism followed a 3-d variable range hopping (VRH) behavior. At lower processing temperature, the CNTs formed the network structure more easily, resulting in a higher σ. The fraction of γ-phase PP increased with increasing the pressing temperature. The CNTs at lower loading (0.1 wt %) served as nucleating sites and promoted the crystallization of PP. The CNTs favored the disentanglement of polymer chains and thus caused an even lower melt viscosity of nanocomposites than that of pure PP. The calculated optical band gap of CNTs was observed to increase with increasing the processing temperature, i.e., 1.55 eV for nanocomposites prepared at 120 °C and 1.70 eV prepared at 160 and 180 °C. Both the Drude model and interband transition phenomenon have been used for theoretical analysis of the real permittivity of the nanocomposites.

12.
Phys Chem Chem Phys ; 17(2): 1498-502, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25431883

ABSTRACT

Polyaniline (PANI) nanofibers prepared by high gravity chemical oxidative polymerization in a rotating packed bed (RPB) have demonstrated a much higher specific capacitance of 667.6 F g(-1) than 375.9 F g(-1) of the nanofibers produced by a stirred tank reactor (STR) at a gravimetric current of 10 A g(-1). Meanwhile, the cycling stability of the electrode is 62.2 and 65.9% for the nanofibers from RPB and STR after 500 cycles, respectively.

13.
ACS Appl Mater Interfaces ; 6(7): 5094-104, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24597470

ABSTRACT

High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties.


Subject(s)
Hydroxides/chemistry , Nanocomposites/chemistry , Polyethylene/chemistry , Hot Temperature , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , X-Ray Diffraction
14.
Chem Commun (Camb) ; 50(2): 201-3, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24217186

ABSTRACT

Polypropylene grafted maleic anhydride (PP-MA, 2500 g mole(-1)) has demonstrated its unique capability to synthesize 1-D ferromagnetic hard (292.7 Oe) γ-Fe2O3 nanochains made of ~24 nm nanoparticles vs. PP-MA with 8000 g mole(-1) for the synthesis of 1-D ferromagnetic soft (70.5 Oe) γ-Fe2O3 nanochains (30 nm) made of flowerlike nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL