Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(14): e2308453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38180283

ABSTRACT

High-sensitive metasurface-based sensors are essential for effective substance detection and insightful bio-interaction studies, which compress light in subwavelength volumes to enhance light-matter interactions. However, current methods to improve sensing performance always focus on optimizing near-field response of individual meta-atom, and fingerprint recognition for bio-substances necessitates several pixelated metasurfaces to establish a quasi-continuous spectrum. Here, a novel sensing strategy is proposed to achieve Terahertz (THz) refractive sensing, and fingerprint recognition based on surface waves (SWs). Leveraging the long-range transmission, strong confinement, and interface sensitivity of SWs, a metasurface-supporting SWs excitation and propagation is experimentally verified to achieve sensing integrations. Through wide-band information collection of SWs, the proposed sensor not only facilitates refractive sensing up to 215.5°/RIU, but also enables the simultaneous resolution of multiple fingerprint information within a continuous spectrum. By covering 5 µm thickness of polyimide, quartz and silicon nitride layers, the maximum phase change of 91.1°, 101.8°, and 126.4° is experimentally obtained within THz band, respectively. Thus, this strategy broadens the research scope of metasurface-excited SWs and introduces a novel paradigm for ultrasensitive sensing functions.

2.
Mol Plant ; 16(12): 1893-1910, 2023 12 04.
Article in English | MEDLINE | ID: mdl-37897037

ABSTRACT

Despite recent progress in crop genomics studies, the genomic changes brought about by modern breeding selection are still poorly understood, thus hampering genomics-assisted breeding, especially in polyploid crops with compound genomes such as common wheat (Triticum aestivum). In this work, we constructed genome resources for the modern elite common wheat variety Aikang 58 (AK58). Comparative genomics between AK58 and the landrace cultivar Chinese Spring (CS) shed light on genomic changes that occurred through recent varietal improvement. We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study (HGWAS) approach, which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci. A total of 123 major HGWAS loci were detected using a genetic population derived from AK58 and CS. Elite homoeologous haplotypes (HHs), formed by combinations of subgenomic homoeologs of the associated loci, were found in both parents and progeny, and many could substantially improve wheat yield and related traits. We built a website where users can download genome assembly sequence and annotation data for AK58, perform blast analysis, and run JBrowse. Our work enriches genome resources for wheat, provides new insights into genomic changes during modern wheat improvement, and suggests that efficient mining of elite HHs can make a substantial contribution to genomics-assisted breeding in common wheat and other polyploid crops.


Subject(s)
Bread , Triticum , Triticum/genetics , Haplotypes/genetics , Genome-Wide Association Study , Plant Breeding , Polyploidy , Genome, Plant/genetics
3.
Antioxidants (Basel) ; 12(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37760020

ABSTRACT

Liver fibrosis is a major challenge to global health because of its various complications, including cirrhosis and hepatocarcinoma, while no effective treatment is available for it. Sappanone A (SA) is a homoisoflavonoid extracted from the heartwood of Caesalpinia sappan Linn. with anti-inflammatory and antioxidant properties. However, the effects of SA on hepatic fibrosis remain unknown. This study aimed to investigate the protective effects of SA on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. To establish a liver fibrosis model, mice were treated intraperitoneally (i.p.) with CCl4 for 4 weeks. SA (25, 50, and 100 mg/kg body weight) was i.p. injected every other day during the same period. Our data indicated that SA decreased liver injury, fibrotic responses, and inflammation due to CCl4 exposure. Consistently, SA reduced oxidative stress and its-mediated hepatocyte death in fibrotic livers. Of note, SA could not directly affect the activation of hepatic stellate cells. Mechanistically, SA treatment lessened oxidative stress-triggered cell death in hepatocytes after CCl4 exposure. SA down-regulated the expression of M1 macrophage polarization markers (CD86 and iNOS) and up-regulated the expression of M2 macrophage polarization markers (CD163, IL-10, and Arg1) in livers and macrophages. Meanwhile, SA induced the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, decreased inflammatory responses and the trend of M2 macrophage polarization provided by SA were substantially abolished by SR202 (a PPARγ inhibitor) treatment in macrophages. Additionally, SA treatment promoted fibrosis regression. Taken together, our findings revealed that treatment with SA alleviated CCl4-induced fibrotic liver in mice through suppression of oxidative stress-mediated hepatocyte death and promotion of M2 macrophage polarization via PPARγ. Thus, SA might pave the way for a new hepatoprotective agent to treat liver fibrosis.

4.
Int Immunopharmacol ; 123: 110752, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37573690

ABSTRACT

Immune-inflammatory responses play a key role in the development of nonalcoholic steatohepatitis (NASH). Previous studies have demonstrated that CXC motif chemokine ligand 5 (CXCL5) correlates positively with obesity and type 2 diabetes. This study is to explore the functional role of CXCL5 in the pathogenesis of NASH. To establish a NASH model, mice were fed with methionine-and choline-deficient high-fat diet for 6 weeks and anti-CXCL5 mAb was injected during the same period. An in vitro NASH model was established by treating palmitic acid (PA), using a trans-well co-culture system of mouse primary hepatocytes and Kupffer cells (KCs), and recombinant mouse (rm) CXCL5 was treated after PA administration. Our data showed that hepatic CXCL5 levels were highly expressed in the NASH mouse model. CXCL5 neutralization significantly alleviated the severity of NASH livers, demonstrated by pathological analysis, decreased biochemicals, and inflammation. Besides, neutralizing CXCL5 reduced lipid accumulation, cell death, and fibrosis in injured livers. In vitro, rmCXCL5 could not affect the activation of hepatic stellate cells. Also, rmCXCL5 exacerbated PA-induced hepatotoxicity and lipid deposition in hepatocytes co-cultured with KCs rather than in single-cultured hepatocytes. Mechanistically, rmCXCL5 not only promoted NOD-like receptor pyrin domain-containing protein 3 (NLRP3) expression, Cleaved caspase-1 expression, and interleukin 1 beta (IL-1ß) secretion in single-cultured and co-cultured KCs but also increased lipid deposition in co-cultured hepatocytes. In addition, MCC950, an inhibitor of NLRP3, almost abolished the effects of rmCXCL5 on PA-treated co-culture system. Therefore, CXCL5 could exacerbate NASH by promoting lipotoxicity of hepatocytes via upregulating NLRP3/Caspase-1/IL-1ß signaling in KCs.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Mice , Caspase 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Hepatocytes/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Kupffer Cells/metabolism , Liver/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Palmitic Acid/pharmacology
5.
Int J Mol Sci ; 24(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37569554

ABSTRACT

Kupffer cells (KCs) play a key part in the pathological process of acetaminophen (APAP)-induced acute liver injury (ALI), the leading cause of acute liver failure in the world. CXC motif chemokine ligand 5 (CXCL5) exerts proinflammatory effects in acute respiratory distress syndrome and arthritis. In the current study, we aim to reveal the effects of CXCL5 on the activation of KCs and the role of CXCL5 in the pathogenesis of APAP-induced hepatotoxicity. The in vivo study, conducted on mice intraperitoneally injected with APAP (300 mg/kg) to establish the ALI model and then treated with Anti-CXCL5 mAb at 30 min and 12 h after the APAP challenge, showed that CXCL5 expression significantly increased in injured livers, and Anti-CXCL5 mAb mitigated the degree of APAP-evoked ALI in mice which was proven through biochemicals and histological examination. Also, neutralization of CXCL5 had no significant effect on APAP metabolism in the liver but exhibited anti-inflammatory effects and ameliorated hepatocellular death in the injured liver. The in vitro data displayed that recombinant mouse CXCL5 treatment promoted APAP-induced cellular toxicity in primary hepatocytes co-cultured with KCs, compared with single-cultured hepatocytes. Consistent with the result, we found that the Anti-CXCL5 mAb gradient decreased LPS-induced expression of inflammatory cytokines in single-cultured KCs. Therefore, CXCL5 could stimulate KCs to produce inflammatory mediators, therefore damaging hepatocytes from APAP toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Kupffer Cells , Mice , Animals , Kupffer Cells/metabolism , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Hepatocytes/metabolism , Liver/metabolism , Mice, Inbred C57BL
6.
Phys Rev E ; 107(3-2): 035201, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37072949

ABSTRACT

Giant half-cycle attosecond pulse generation in the coherent bremsstrahlung emission regime is proposed for laser pulses with normal incidence on a double-foil target, where the first foil is transparent and the second foil is opaque. The presence of the second opaque target contributes to the formation of a relativistic flying electron sheet (RFES) from the first foil target. After the RFES has passed through the second opaque target, it is decelerated sharply, and bremsstrahlung emission occurs, which results in the generation of an isolated half-cycle attosecond pulse having an intensity of ∼1.4×10^{22}W/cm^{2} and a duration of 3.6 as. The generation mechanism does not require extra filters and may open a regime of nonlinear attosecond science.

7.
Opt Lett ; 48(3): 819-822, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36723597

ABSTRACT

Recent progress on betatron X-ray source enables the exploration of new physics in fundamental science; however, the application range is still limited by the source flux and brightness. In this Letter, we show the generation of more than 1 × 1012 photons (energy > 1 keV) with a peak brightness of 7.8 × 1022 photons/(s mm2 mrad2) at 0.1% bandwidth (BW) at 10 keV, driven by a femtosecond laser pulse of ≈5.5 J and a sub-critical density plasma (SCDP). The source flux is more than two orders of magnitude higher than that from typical laser wakefield electron acceleration. This method to produce high-flux and bright X-ray source would open a wide range of applications.

8.
Phys Rev E ; 106(2-2): 025203, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36109966

ABSTRACT

A unique electron nanobunching mechanism using a two-color laser pulse interacting with a microstructured foil is proposed for directly generating ultraintense isolated attosecond pulses in the transmission direction without requiring extra filters and gating techniques. The unique nanobunching mechanism ensures that only one electron sheet contributes to the transmitted radiation. Accordingly, the generated attosecond pulses are unipolar and have durations at the full width at half-maximum about 5 attoseconds. The emitted ultrahigh-amplitude isolated attosecond pulses have intensities of up to ∼10^{21}W/cm^{2}, which are beyond the limitations of weak attosecond pulses generated by gas harmonics sources and may open a new regime of nonlinear attosecond studies. Unipolar pulses can be useful for probing ultrafast electron dynamics in matter via asymmetric manipulation.

9.
Toxicology ; 480: 153336, 2022 10.
Article in English | MEDLINE | ID: mdl-36126895

ABSTRACT

Sappanone A (SA), a homoisoflavonoid compound extracted from the heartwood of Caesalpinia sappan Linn., exerts anti-inflammatory and antioxidant activities. However, the effects of SA on acetaminophen (APAP) overdose-induced acute liver injury (ALI) have not been determined yet. This study aims to explore the protective effects of SA and the potential mechanisms of action. Mice were pretreated with SA (25, 50, and 100 mg/kg) by intraperitoneal (i.p.) injection for seven days prior to APAP (300 mg/kg, i.p.) administration. At 12 h after APAP injection, serum and liver samples were collected. Primary murine hepatocytes were used to investigate the underlying mechanisms. SA pretreatment dose-dependently attenuated APAP-induced ALI, as validated by reduced serum alanine/aspartate aminotransferase levels, histopathologic lesions, and oxidative stress. Consistently, pretreatment with SA reduced the formation of APAP protein adducts in damaged livers of mice. Mechanistically, SA could facilitate the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and thus promote cellular glutathione (GSH) synthesis. The hepatoprotective outcomes provided by SA were significantly abolished by treatment with ML385, a Nrf2 inhibitor. Besides, anti-inflammatory property of SA reduced inflammatory reaction in injured livers of mice. Of note, posttreatment with SA reveals significant therapeutic influences against APAP-induced ALI in mice. Collectively, our findings demonstrated that pretreated-SA ameliorated APAP-mediated ALI in mice, at least in part, by reducing the generation of APAP protein adducts via Nrf2-enhanced GSH synthesis, and by diminishing hepatic inflammation. Therefore, SA could be a potential hepatoprotective agent for treating ALI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Acetaminophen/toxicity , Alanine/metabolism , Alanine/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Aspartate Aminotransferases , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Glutathione/metabolism , Isoflavones , Liver , Mice , NF-E2-Related Factor 2/metabolism , Oxidative Stress
10.
Plant Commun ; 3(2): 100268, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35529951

ABSTRACT

Gene duplication provides raw genetic materials for evolution and potentially novel genes for crop improvement. The two seminal genomic studies of Aegilops tauschii both mentioned the large number of genes independently duplicated in recent years, but the duplication mechanism and the evolutionary significance of these gene duplicates have not yet been investigated. Here, we found that a recent burst of gene duplications (hereafter abbreviated as the RBGD) has probably occurred in all sequenced Triticeae species. Further investigations of the characteristics of the gene duplicates and their flanking sequences suggested that transposable element (TE) activity may have been involved in generating the RBGD. We also characterized the duplication timing, retention pattern, diversification, and expression of the duplicates following the evolution of Triticeae. Multiple subgenome-specific comparisons of the duplicated gene pairs clearly supported extensive differential regulation and related functional diversity among such pairs in the three subgenomes of bread wheat. Moreover, several duplicated genes from the RBGD have evolved into key factors that influence important agronomic traits of wheat. Our results provide insights into a unique source of gene duplicates in Triticeae species, which has increased the gene dosage together with the two polyploidization events in the evolutionary history of wheat.


Subject(s)
Aegilops , Gene Duplication , Aegilops/genetics , Genome, Plant/genetics , Poaceae/genetics , Triticum/genetics
11.
Dis Markers ; 2022: 5925982, 2022.
Article in English | MEDLINE | ID: mdl-35265226

ABSTRACT

Molecular analysis facilitates the prediction of overall survival (OS) of breast cancer and decision-making of the treatment plan. The current study was designed to identify new prognostic genes for breast cancer and construct an effective prognostic signature with integrated bioinformatics analysis. Differentially expressed genes in breast cancer samples from The Cancer Genome Atlas (TCGA) dataset were filtered by univariate Cox regression analysis. The prognostic model was optimized by the Akaike information criterion and further validated using the TCGA dataset (n = 1014) and Gene Expression Omnibus (GEO) dataset (n = 307). The correlation between the risk score and clinical information was assessed by univariate and multivariate Cox regression analyses. Functional pathways in relation to high-risk and low-risk groups were analyzed using gene set enrichment analysis (GSEA). Four prognostic genes (EXOC6, GPC6, PCK2, and NFATC2) were screened and used to construct a prognostic model, which showed robust performance in classifying the high-risk and low-risk groups. The risk score was significantly related to clinical features and OS. We identified 19 functional pathways significantly associated with the risk score. This study constructed a new prognostic model with a high prediction performance for breast cancer. The four-gene prognostic signature could serve as an effective tool to predict prognosis and assist the management of breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Computational Biology , Gene Expression Profiling , Female , Humans , Middle Aged , Prognosis , Survival Analysis
12.
Genome Biol Evol ; 13(12)2021 12 01.
Article in English | MEDLINE | ID: mdl-34878129

ABSTRACT

Acer catalpifolium is an endangered species restricted to remote localities of West China. Understanding the genomic content and evolution of A. catalpifolium is essential to conservation efforts of this rare and ecologically valuable plant. Here, we report a high-quality genome of A. catalpifolium consisting of ∼654 Mbp and ∼35,132 protein-coding genes. We detected 969 positively selected genes in two Acer genomes compared with four other eudicots, 65 of which were transcription factors. We hypothesize that these positively selected mutations in transcription factors might affect their function and thus contribute to A. catalpifolium's decline-type population. We also identified 179 significantly expanded gene families compared with 12 other eudicots, some of which are involved in stress responses, such as the FRS-FRF family. We inferred that A. catalpifolium has experienced gene family expansions to cope with environmental stress in its evolutionary history. Finally, 109 candidate genes encoding key enzymes in the lignin biosynthesis pathway were identified in A. catalpifolium; of particular note were the large range and high copy number of cinnamyl alcohol dehydrogenase genes. The chromosome-level genome of A. catalpifolium presented here may serve as a fundamental genomic resource for better understanding endangered Acer species, informing future conservation efforts.


Subject(s)
Acer , Acer/genetics , Animals , Endangered Species , Genome , Genomics , Phylogeny , Whole Genome Sequencing
13.
Nat Plants ; 7(9): 1239-1253, 2021 09.
Article in English | MEDLINE | ID: mdl-34475528

ABSTRACT

Aristolochia, a genus in the magnoliid order Piperales, has been famous for centuries for its highly specialized flowers and wide medicinal applications. Here, we present a new, high-quality genome sequence of Aristolochia fimbriata, a species that, similar to Amborella trichopoda, lacks further whole-genome duplications since the origin of extant angiosperms. As such, the A. fimbriata genome is an excellent reference for inferences of angiosperm genome evolution, enabling detection of two novel whole-genome duplications in Piperales and dating of previously reported whole-genome duplications in other magnoliids. Genomic comparisons between A. fimbriata and other angiosperms facilitated the identification of ancient genomic rearrangements suggesting the placement of magnoliids as sister to monocots, whereas phylogenetic inferences based on sequence data we compiled yielded ambiguous relationships. By identifying associated homologues and investigating their evolutionary histories and expression patterns, we revealed highly conserved floral developmental genes and their distinct downstream regulatory network that may contribute to the complex flower morphology in A. fimbriata. Finally, we elucidated the genetic basis underlying the biosynthesis of terpenoids and aristolochic acids in A. fimbriata.


Subject(s)
Aristolochia/growth & development , Aristolochia/genetics , Aristolochic Acids/biosynthesis , Biological Evolution , Flowers/growth & development , Flowers/genetics , Magnoliopsida/genetics , Terpenes/metabolism , Aristolochic Acids/genetics , Genetic Variation , Genome, Plant , Genotype , Phylogeny , Plants, Medicinal/genetics , Plants, Medicinal/growth & development
14.
Opt Lett ; 46(16): 3969-3972, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34388787

ABSTRACT

A number of applications require x rays of both high flux and narrow bandwidth. In this work, we experimentally demonstrate the high-efficiency generation of narrowband soft x rays from carbon nanotube foams irradiated by a femtosecond laser pulse at an intensity of 1019W/cm2. The building blocks of the foam, single-walled carbon nanotube bundles with diameters smaller than the laser skin length can be volumetrically heated and fully ionized on a femtosecond time scale. The three-dimensional network structure of the foam permits deep penetration and drastic absorption of the laser pulse, and results in bright line emissions without prominent Stark broadening. A single-shot yield of 3×1014photons in the carbon Lyα line at 3.37 nm was measured with a bandwidth of 0.013 nm.

15.
Front Cell Dev Biol ; 9: 672693, 2021.
Article in English | MEDLINE | ID: mdl-33996830

ABSTRACT

Cancer stem cell (CSC) is thought to be the major cause of radio-resistance and relapse post radiotherapy (RT). Recently ultra-high dose rate "FLASH-RT" evokes great interest for its decreasing normal tissue damages while maintaining tumor responses compared with conventional dose rate RT. However, the killing effect and mechanism of FLASH irradiation (FLASH-IR) on CSC and normal cancer cell are still unclear. Presently the radiation induced death profile of CSC and normal cancer cell were studied. Cells were irradiated with FLASH-IR (∼109 Gy/s) at the dose of 6-9 Gy via laser-accelerated nanosecond particles. Then the ratio of apoptosis, pyroptosis and necrosis were determined. The results showed that FLASH-IR can induce apoptosis, pyroptosis and necrosis in both CSC and normal cancer cell with different ratios. And CSC was more resistant to radiation than normal cancer cell under FLASH-IR. Further experiments tracing lysosome and autophagy showed that CSCs had higher levels of lysosome and autophagy. Taken together, our results suggested that the radio-resistance of CSC may associate with the increase of lysosome-mediated autophagy, and the decrease of apoptosis, necrosis and pyroptosis. To our limited knowledge, this is the first report shedding light on the killing effects and death pathways of CSC and normal cancer cell under FLASH-IR. By clarifying the death pathways of CSC and normal cancer cell under FLASH-IR, it may help us improve the understanding of the radio-resistance of CSC and thus help to optimize the future clinical FLASH treatment plan.

16.
Front Cell Dev Biol ; 9: 672929, 2021.
Article in English | MEDLINE | ID: mdl-33996831

ABSTRACT

Ultra-high dose rate FLASH irradiation (FLASH-IR) has got extensive attention since it may provide better protection on normal tissues while maintain tumor killing effect compared with conventional dose rate irradiation. The FLASH-IR induced protection effect on normal tissues is exhibited as radio-resistance of the irradiated normal cells, and is suggested to be related to oxygen depletion. However, the detailed cell death profile and pathways are still unclear. Presently normal mouse embryonic fibroblast cells were FLASH irradiated (∼109 Gy/s) at the dose of ∼10-40 Gy in hypoxic and normoxic condition, with ultra-fast laser-generated particles. The early apoptosis, late apoptosis and necrosis of cells were detected and analyzed at 6, 12, and 24 h post FLASH-IR. The results showed that FLASH-IR induced significant early apoptosis, late apoptosis and necrosis in normal fibroblast cells, and the apoptosis level increased with time, in either hypoxic or normoxic conditions. In addition, the proportion of early apoptosis, late apoptosis and necrosis were significantly lower in hypoxia than that of normoxia, indicating that radio-resistance of normal fibroblast cells under FLASH-IR can be enhanced by hypoxia. To further investigate the apoptosis related profile and potential pathways, mitochondria dysfunction cells resulting from loss of cytochrome c (cyt c-/-) were also irradiated. The results showed that compared with irradiated normal cells (cyt c+/+), the late apoptosis and necrosis but not early apoptosis proportions of irradiated cyt c-/- cells were significant decreased in both hypoxia and normoxia, indicating mitochondrial dysfunction increased radio-resistance of FLASH irradiated cells. Taken together, to our limited knowledge, this is the first report shedding light on the death profile and pathway of normal and cyt c-/- cells under FLASH-IR in hypoxic and normoxic circumstances, which might help us improve the understanding of the FLASH-IR induced protection effect in normal cells, and thus might potentially help to optimize the future clinical FLASH treatment.

17.
Opt Express ; 29(4): 5427-5436, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33726079

ABSTRACT

We demonstrate the high-efficiency generation of water-window soft x-ray emissions from polyethylene nanowire array targets irradiated by femtosecond laser pulses at the intensity of 4×1019 W/cm2. The experimental results indicate more than one order of magnitude enhancement of the water-window x-ray emissions from the nanowire array targets compared to the planar targets. The highest energy conversion efficiency from laser to water-window x-rays is measured as 0.5%/sr, which comes from the targets with the longest nanowires. Supported by particle-in-cell simulations and atomic kinetic codes, the physics that leads to the high conversion efficiency is discussed.

18.
Phys Rev E ; 102(5-1): 053212, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33327078

ABSTRACT

We propose a scheme to overcome the great challenge of polarization loss in spin-polarized ion acceleration. When a petawatt laser pulse penetrates through a compound plasma target consisting of a double layer slab and prepolarized hydrogen halide gas, a strong forward moving quasistatic longitudinal electric field is constructed by the self-generated laser-driven plasma. This field with a varying drift velocity efficiently boosts the prepolarized protons via a two-stage coherent acceleration process. Its merit is not only achieving a highly energetic beam but also eliminating the undesired polarization loss of the accelerated protons. We study the proton dynamics via Hamiltonian analyses, specifically deriving the threshold of triggering the two-stage coherent acceleration. To confirm the theoretical predictions, we perform three-dimensional PIC simulations, where unprecedented proton beams with energy approximating half GeV and polarization ratio ∼ 94% are obtained.

19.
Phys Rev E ; 102(1-1): 013207, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795002

ABSTRACT

Leveraging on analyses of Hamiltonian dynamics to examine the ion motion, we explicitly demonstrate that the proton sheet crossing and plateau-type energy spectrum are two intrinsic features of the effectively accelerated proton beams driven by a drift quasistatic longitudinal electric field. Via two-dimensional particle-in-cell simulations, we show the emergence of proton sheet crossing in a relativistically transparent plasma foil irradiated by a linearly polarized short pulse with the power of one petawatt. Instead of successively blowing the whole foil forward, the incident laser pulse readily penetrates through the plasma bulk, where the proton sheet crossing takes place and the merged self-generated longitudinal electric field traps and reflects the protons to yield a group of protons with plateau-type energy spectrum.

20.
Nature ; 577(7788): 79-84, 2020 01.
Article in English | MEDLINE | ID: mdl-31853069

ABSTRACT

Water lilies belong to the angiosperm order Nymphaeales. Amborellales, Nymphaeales and Austrobaileyales together form the so-called ANA-grade of angiosperms, which are extant representatives of lineages that diverged the earliest from the lineage leading to the extant mesangiosperms1-3. Here we report the 409-megabase genome sequence of the blue-petal water lily (Nymphaea colorata). Our phylogenomic analyses support Amborellales and Nymphaeales as successive sister lineages to all other extant angiosperms. The N. colorata genome and 19 other water lily transcriptomes reveal a Nymphaealean whole-genome duplication event, which is shared by Nymphaeaceae and possibly Cabombaceae. Among the genes retained from this whole-genome duplication are homologues of genes that regulate flowering transition and flower development. The broad expression of homologues of floral ABCE genes in N. colorata might support a similarly broadly active ancestral ABCE model of floral organ determination in early angiosperms. Water lilies have evolved attractive floral scents and colours, which are features shared with mesangiosperms, and we identified their putative biosynthetic genes in N. colorata. The chemical compounds and biosynthetic genes behind floral scents suggest that they have evolved in parallel to those in mesangiosperms. Because of its unique phylogenetic position, the N. colorata genome sheds light on the early evolution of angiosperms.


Subject(s)
Genome, Plant , Nymphaea/genetics , Phylogeny , Flowers/genetics , Flowers/metabolism , Nymphaea/metabolism , Odorants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...