Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134134, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554514

ABSTRACT

Microbial remediation of cadmium-contaminated soil offers advantages like environmental friendliness, cost-effectiveness, and simple operation. However, the efficacy of this remediation process relies on obtaining dominant strains and a comprehensive understanding of their Cd adsorption mechanisms. This study identified two Cd-resistant bacteria, Burkholderia sp. 1-22 and Bacillus sp. 6-6, with significant growth-promoting effects from rice rhizosphere soil. The strains showed remarkable Cd resistance up to ∼200 mg/L and alleviated Cd toxicity by regulating pH and facilitating bacterial adsorption of Cd. FTIR analysis showed crucial surface functional groups, like carboxyl and amino groups, on bacteria played significant roles in Cd adsorption. The strains could induce CdCO3 formation via a microbially induced calcium precipitation (MICP) mechanism, confirmed by SEM-EDS, X-ray analysis, and elemental mapping. Pot experiments showed these strains significantly increased organic matter and enzyme activity (e.g., urease, sucrase, peroxidase) in the rhizosphere soil versus the control group. These changes are crucial for restricting Cd mobility. Furthermore, strains 6-6 and 1-22 significantly enhance plant root detoxification of Cd, alleviating toxicity. Notably, increased pH likely plays a vital role in enhancing Cd precipitation and adsorption by strains, converting free Cd into non-bioavailable forms.


Subject(s)
Bacillus , Burkholderia , Cadmium , Oryza , Rhizosphere , Soil Microbiology , Soil Pollutants , Oryza/microbiology , Oryza/growth & development , Cadmium/toxicity , Cadmium/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Burkholderia/metabolism , Adsorption , Bacillus/metabolism , Biodegradation, Environmental , Hydrogen-Ion Concentration , Plant Roots/microbiology , Plant Roots/growth & development , Plant Roots/metabolism
2.
Article in English | MEDLINE | ID: mdl-38194184

ABSTRACT

This study presents a comparison between two hydrolysis systems (MnO2/H2O2 and ascorbic acid (VC)/H2O2) for the depolymerization of exopolysaccharide (EPS) from Lactobacillus plantarum LPC-1. Response surface methodology (RSM) was used to optimize these two degradation systems, resulting in two H2O2-free degradation products, MEPS (MnO2/H2O2-treated EPS) and VEPS (VC/H2O2-treated EPS), where H2O2 residues in the final products and their antioxidant activity were considered vital points. The relationship between the structural variations of two degraded polysaccharides and their antioxidant activity was characterized. Physicochemical tests showed that H2O2 had a notable impact on determining the total and reducing sugars in the polysaccharides, and both degradation systems efficiently eliminated this effect. After optimization, the average molecular weight of EPS was reduced from 265.75 kDa to 135.41 kDa (MEPS) and 113.11 kDa (VEPS), improving its antioxidant properties. Characterization results showed that the two hydrolysis products had similar major functional groups and monosaccharide composition as EPS. The crystal structure, main chain length, and branched chain number were crucial factors affecting the biological activity of polysaccharides. In pot testing, two degraded polysaccharides improved spinach quality more than EPS due to their lower molecular weights, suggesting the advantages of low-molecular-weight polysaccharides. In summary, these two degradation techniques offer valuable insights for further expanding the utilization of microbial resources.

3.
Int J Biol Macromol ; 253(Pt 2): 126789, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37690636

ABSTRACT

Selenium nanoparticles (SeNPs) have gained significant attention in the agricultural field due to their favorable bioavailability and low toxicity, making them a highly researched subject. In this study, crude polysaccharides from spent mushroom substrate of Agrocybe aegerita (AaPs) were extracted for preparing the polysaccharide­selenium-nanoparticles (AaPs-SeNPs) by ascorbic acid reduction method. The structure of AaPs-SeNPs was analyzed and their growth-promoting effects on rice seedlings were studied by adopting different application methods. The results revealed that AaPs-SeNPs exhibited improved free radical scavenging ability, with a lower half-maximal inhibitory concentrations compared to AaPs. Rice seedlings treated with AaPs-SeNPs showed significant enhancements in growth characteristics when compared to AaPs treatment, and foliar application exhibited a better growth-promoting effect compared to root application. Moreover, the growth performance and antioxidant enzyme activities of rice seedlings were enhanced by the addition of AaPs-SeNPs, and the absorption efficiency of essential nutrients such as N/P/K and Fe/Zn/Mn was also improved at appropriate concentrations, which could be one of the key factors contributing to the improved growth performance of plants. This study provides new aspects for the utilization of SMS, and also offers new insights from the perspective of nutrient absorption on how polysaccharide-conjugated selenium nanoparticles enhance crop growth.


Subject(s)
Agaricales , Nanoparticles , Oryza , Selenium , Selenium/chemistry , Seedlings , Polysaccharides/pharmacology , Polysaccharides/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...