Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccines (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793795

ABSTRACT

Background:Streptococcus suis (S. suis) is a Gram-positive bacterium that causes substantial disease in pigs. S. suis is also an emerging zoonoses in humans, primarily in Asia, through the consumption of undercooked pork and the handling of infected pig meat as well as carcasses. The complexity of S. suis epidemiology, characterized by the presence of multiple bacterial serotypes and strains with diverse sequence types, identifies a critical need for a universal vaccine with the ability to confer cross-protective immunity. Highly conserved immunogenic proteins are generally considered good candidate antigens for subunit universal vaccines. Methods: In this study, the cross-protection of the sugar ABC transporter substrate-binding protein (S-ABC), a surface-associated immunogenic protein of S. suis, was examined in mice for evaluation as a universal vaccine candidate. Results: S-ABC was shown to be highly conserved, with 97% amino acid sequence identity across 31 S. suis strains deposited in GenBank. Recombinantly expressed S-ABC (rS-ABC) was recognized via rabbit sera specific to S. suis serotype 2. The immunization of mice with rS-ABC induced antigen-specific antibody responses, as well as IFN-γ and IL-4, in multiple organs, including the lungs. rS-ABC immunization conferred high (87.5% and 100%) protection against challenges with S. suis serotypes 2 and 9, demonstrating high cross-protection against these serotypes. Protection, albeit lower (50%), was also observed in mice challenged with S. suis serotype 7. Conclusions: These data identify S-ABC as a promising antigenic target within a universal subunit vaccine against S. suis.

2.
Vet Sci ; 10(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36669049

ABSTRACT

Streptococcus suis is a significant pathogen in pigs and a newly emerging zoonotic agent in humans. The presence of multiple serotypes and strains with diversified sequence types in pig herds highlights the need for the identification of broadly cross-reactive universal vaccine antigen targets, capable of providing cross-protection against S. suis infection. Subunit vaccines based on the conserved proteins shared between different S. suis serotypes are potential candidates for such a universally protective vaccine. In the present study, phosphate ABC transporter ATP-binding protein PstB (PstB), an immunogenic protein of the S. suis bacterium, was expressed and purified, and then subjected to cross-protection evaluation in mice. The PstB protein showed nearly 100% amino acid similarity across a panel of 31 S. suis isolates representing different serotypes, which were collected from different countries. A recombinant PstB (rPstB) protein (S. suis serotype 2) was recognized by rabbit sera specific to this serotype, and induced high levels of IFN-γ and IL-4 in mice immunized with the recombinant protein. These cytokines are considered important for protection against S. suis infection. Immunization of mice with rPstB resulted in an 87.5% protection against challenge with S. suis serotype 2 and 9 strains, suggesting a high level of cross-protection for S. suis serotypes 2 and 9. A lower protection rate (62.5%) was observed in mice challenged with the S. suis serotype 7 strain. These data demonstrate that PstB is a promising target antigen for development as a component of a universal subunit vaccine against multiple S. suis serotypes.

3.
Microbiol Res ; 256: 126954, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34973546

ABSTRACT

Lactic acid bacteria that inhabit in the lung play important roles in maintaining the microbiome balance by interacting with the host immune system. Numerous metabolites (e.g., short chain fatty acids, bacteriocins, and hydrogen peroxide) produced by Lactobacillus sakei possess a special inhibitory spectrum against invading pathogens. In this research, the whole genome of L. sakei JD10 strain isolated from the porcine lung was sequenced and investigated. The whole size of the L. sakei JD10 chromosome was 1,989,921 bp, which encoded a total of 1951 predicted genes. Genome analyses revealed that many genes encoded carbohydrate-active enzymes (CAZymes) were predicted, which were responsible for the carbohydrate degradation and short chain fatty acids production. The metabolic profiles of short chain fatty acids in the L. sakei JD10 culture medium were measured by GC/TOFMS, and their regulatory effects on bacterial phagocytosis of RAW264.7 cells were also determined. The bacteriocin-producing genes of the L. sakei JD10 genome were also predicted, and a bacteriocin gene encoding carnocin was characterized and its molecular structure was analyzed. Two CRISPR-Cas system related genes were identified from the L. sakei JD10 genome, revealed that precise and efficient genome editing technologies could be applied for genetic engineering-manipulation. In all, investigation on the genomic features and metabolic features of L. sakei JD10 showed the potential probiotic traits to fight against pathogenic infection and regulate the host immune function.


Subject(s)
Bacteriocins , Latilactobacillus sakei , Probiotics , Animals , Bacteriocins/genetics , Genomics , Latilactobacillus sakei/genetics , Latilactobacillus sakei/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...