Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Diagn Interv Imaging ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918123

ABSTRACT

The rapid advancement of artificial intelligence (AI) in healthcare has revolutionized the industry, offering significant improvements in diagnostic accuracy, efficiency, and patient outcomes. However, the increasing adoption of AI systems also raises concerns about their environmental impact, particularly in the context of climate change. This review explores the intersection of climate change and AI in healthcare, examining the challenges posed by the energy consumption and carbon footprint of AI systems, as well as the potential solutions to mitigate their environmental impact. The review highlights the energy-intensive nature of AI model training and deployment, the contribution of data centers to greenhouse gas emissions, and the generation of electronic waste. To address these challenges, the development of energy-efficient AI models, the adoption of green computing practices, and the integration of renewable energy sources are discussed as potential solutions. The review also emphasizes the role of AI in optimizing healthcare workflows, reducing resource waste, and facilitating sustainable practices such as telemedicine. Furthermore, the importance of policy and governance frameworks, global initiatives, and collaborative efforts in promoting sustainable AI practices in healthcare is explored. The review concludes by outlining best practices for sustainable AI deployment, including eco-design, lifecycle assessment, responsible data management, and continuous monitoring and improvement. As the healthcare industry continues to embrace AI technologies, prioritizing sustainability and environmental responsibility is crucial to ensure that the benefits of AI are realized while actively contributing to the preservation of our planet.

2.
JCI Insight ; 9(11)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38855869

ABSTRACT

Progressive pulmonary fibrosis (PPF), defined as the worsening of various interstitial lung diseases (ILDs), currently lacks useful biomarkers. To identify novel biomarkers for early detection of patients at risk of PPF, we performed a proteomic analysis of serum extracellular vesicles (EVs). Notably, the identified candidate biomarkers were enriched for lung-derived proteins participating in fibrosis-related pathways. Among them, pulmonary surfactant-associated protein B (SFTPB) in serum EVs could predict ILD progression better than the known biomarkers, serum KL-6 and SP-D, and it was identified as an independent prognostic factor from ILD-gender-age-physiology index. Subsequently, the utility of SFTPB for predicting ILD progression was evaluated further in 2 cohorts using serum EVs and serum, respectively, suggesting that SFTPB in serum EVs but not in serum was helpful. Among SFTPB forms, pro-SFTPB levels were increased in both serum EVs and lungs of patients with PPF compared with those of the control. Consistently, in a mouse model, the levels of pro-SFTPB, primarily originating from alveolar epithelial type 2 cells, were increased similarly in serum EVs and lungs, reflecting pro-fibrotic changes in the lungs, as supported by single-cell RNA sequencing. SFTPB, especially its pro-form, in serum EVs could serve as a biomarker for predicting ILD progression.


Subject(s)
Biomarkers , Disease Progression , Extracellular Vesicles , Pulmonary Fibrosis , Pulmonary Surfactant-Associated Protein B , Extracellular Vesicles/metabolism , Humans , Animals , Biomarkers/blood , Mice , Male , Female , Pulmonary Fibrosis/blood , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Pulmonary Surfactant-Associated Protein B/blood , Pulmonary Surfactant-Associated Protein B/metabolism , Middle Aged , Aged , Lung Diseases, Interstitial/blood , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/pathology , Lung Diseases, Interstitial/metabolism , Lung/pathology , Lung/metabolism , Proteomics/methods , Disease Models, Animal , Prognosis , Protein Precursors , Pulmonary Surfactant-Associated Proteins
4.
Jpn J Radiol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658500

ABSTRACT

PURPOSE: To investigate the relationship between interstitial lung abnormalities (ILAs) and mortality in patients with esophageal cancer and the cause of mortality. MATERIALS AND METHODS: This retrospective study investigated patients with esophageal cancer from January 2011 to December 2015. ILAs were visually scored on baseline CT using a 3-point scale (0 = non-ILA, 1 = indeterminate for ILA, and 2 = ILA). ILAs were classified into subcategories of non-subpleural, subpleural non-fibrotic, and subpleural fibrotic. Five-year overall survival (OS) was compared between patients with and without ILAs using the multivariable Cox proportional hazards model. Subgroup analyses were performed based on cancer stage and ILA subcategories. The prevalences of treatment complications and death due to esophageal cancer and pneumonia/respiratory failure were analyzed using Fisher's exact test. RESULTS: A total of 478 patients with esophageal cancer (age, 66.8 years ± 8.6 [standard deviation]; 64 women) were evaluated in this study. Among them, 267 patients showed no ILAs, 125 patients were indeterminate for ILAs, and 86 patients showed ILAs. ILAs were a significant factor for shorter OS (hazard ratio [HR] = 1.68, 95% confidence interval [CI] 1.10-2.55, P = 0.016) in the multivariable Cox proportional hazards model adjusting for age, sex, smoking history, clinical stage, and histology. On subgroup analysis using patients with clinical stage IVB, the presence of ILAs was a significant factor (HR = 3.78, 95% CI 1.67-8.54, P = 0.001). Subpleural fibrotic ILAs were significantly associated with shorter OS (HR = 2.22, 95% CI 1.25-3.93, P = 0.006). There was no significant difference in treatment complications. Patients with ILAs showed a higher prevalence of death due to pneumonia/respiratory failure than those without ILAs (non-ILA, 2/95 [2%]; ILA, 5/39 [13%]; P = 0.022). The prevalence of death due to esophageal cancer was similar in patients with and without ILA (non-ILA, 82/95 [86%]; ILA 32/39 [82%]; P = 0.596). CONCLUSION: ILAs were significantly associated with shorter survival in patients with esophageal cancer.

5.
J Allergy Clin Immunol ; 153(5): 1268-1281, 2024 May.
Article in English | MEDLINE | ID: mdl-38551536

ABSTRACT

BACKGROUND: Novel biomarkers (BMs) are urgently needed for bronchial asthma (BA) with various phenotypes and endotypes. OBJECTIVE: We sought to identify novel BMs reflecting tissue pathology from serum extracellular vesicles (EVs). METHODS: We performed data-independent acquisition of serum EVs from 4 healthy controls, 4 noneosinophilic asthma (NEA) patients, and 4 eosinophilic asthma (EA) patients to identify novel BMs for BA. We confirmed EA-specific BMs via data-independent acquisition validation in 61 BA patients and 23 controls. To further validate these findings, we performed data-independent acquisition for 6 patients with chronic rhinosinusitis without nasal polyps and 7 patients with chronic rhinosinusitis with nasal polyps. RESULTS: We identified 3032 proteins, 23 of which exhibited differential expression in EA. Ingenuity pathway analysis revealed that protein signatures from each phenotype reflected disease characteristics. Validation revealed 5 EA-specific BMs, including galectin-10 (Gal10), eosinophil peroxidase, major basic protein, eosinophil-derived neurotoxin, and arachidonate 15-lipoxygenase. The potential of Gal10 in EVs was superior to that of eosinophils in terms of diagnostic capability and detection of airway obstruction. In rhinosinusitis patients, 1752 and 8413 proteins were identified from EVs and tissues, respectively. Among 11 BMs identified in EVs and tissues from patients with chronic rhinosinusitis with nasal polyps, 5 (including Gal10 and eosinophil peroxidase) showed significant correlations between EVs and tissues. Gal10 release from EVs was implicated in eosinophil extracellular trapped cell death in vitro and in vivo. CONCLUSION: Novel BMs such as Gal10 from serum EVs reflect disease pathophysiology in BA and may represent a new target for liquid biopsy approaches.


Subject(s)
Asthma , Biomarkers , Extracellular Vesicles , Galectins , Sinusitis , Humans , Asthma/blood , Asthma/physiopathology , Asthma/immunology , Asthma/diagnosis , Extracellular Vesicles/metabolism , Female , Male , Galectins/blood , Biomarkers/blood , Adult , Middle Aged , Sinusitis/blood , Sinusitis/immunology , Rhinitis/blood , Rhinitis/immunology , Rhinitis/physiopathology , Nasal Polyps/immunology , Nasal Polyps/blood , Eosinophils/immunology , Aged , Chronic Disease
6.
Radiographics ; 44(4): e230079, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38547031

ABSTRACT

The pleura is a thin, smooth, soft-tissue structure that lines the pleural cavity and separates the lungs from the chest wall, consisting of the visceral and parietal pleurae and physiologic pleural fluid. There is a broad spectrum of normal variations and abnormalities in the pleura, including pneumothorax, pleural effusion, and pleural thickening. Pneumothorax is associated with pulmonary diseases and is caused by iatrogenic or traumatic factors. Chest radiography and US help detect pneumothorax with various signs, and CT can also help assess the causes. Pleural effusion occurs in a wide spectrum of diseases, such as heart failure, cirrhosis, asbestos-related diseases, infections, chylothorax, and malignancies. Chest US allows detection of a small pleural effusion and evaluation of echogenicity or septa in pleural effusion. Pleural thickening may manifest as unilateral or bilateral and as focal, multifocal, or diffuse. Various diseases can demonstrate pleural thickening, such as asbestos-related diseases, neoplasms, and systemic diseases. CT, MRI, and fluorodeoxyglucose (FDG) PET/CT can help differentiate between benign and malignant lesions. Knowledge of these features can aid radiologists in suggesting diagnoses and recommending further examinations with other imaging modalities. The authors provide a comprehensive review of the clinical and multimodality imaging findings of pleural diseases and their differential diagnoses. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Subject(s)
Asbestos , Pleural Diseases , Pleural Effusion , Pleural Neoplasms , Pneumothorax , Humans , Diagnosis, Differential , Pneumothorax/complications , Positron Emission Tomography Computed Tomography , Pleural Diseases/diagnostic imaging , Pleural Effusion/complications , Pleural Neoplasms/complications
7.
Jpn J Radiol ; 42(7): 685-696, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38551772

ABSTRACT

The advent of Deep Learning (DL) has significantly propelled the field of diagnostic radiology forward by enhancing image analysis and interpretation. The introduction of the Transformer architecture, followed by the development of Large Language Models (LLMs), has further revolutionized this domain. LLMs now possess the potential to automate and refine the radiology workflow, extending from report generation to assistance in diagnostics and patient care. The integration of multimodal technology with LLMs could potentially leapfrog these applications to unprecedented levels.However, LLMs come with unresolved challenges such as information hallucinations and biases, which can affect clinical reliability. Despite these issues, the legislative and guideline frameworks have yet to catch up with technological advancements. Radiologists must acquire a thorough understanding of these technologies to leverage LLMs' potential to the fullest while maintaining medical safety and ethics. This review aims to aid in that endeavor.


Subject(s)
Deep Learning , Radiology , Humans , Radiology/methods , Radiologists , Artificial Intelligence , Workflow
8.
Jpn J Radiol ; 42(6): 590-598, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38413550

ABSTRACT

PURPOSE: To predict solid and micropapillary components in lung invasive adenocarcinoma using radiomic analyses based on high-spatial-resolution CT (HSR-CT). MATERIALS AND METHODS: For this retrospective study, 64 patients with lung invasive adenocarcinoma were enrolled. All patients were scanned by HSR-CT with 1024 matrix. A pathologist evaluated subtypes (lepidic, acinar, solid, micropapillary, or others). Total 61 radiomic features in the CT images were calculated using our modified texture analysis software, then filtered and minimized by least absolute shrinkage and selection operator (LASSO) regression to select optimal radiomic features for predicting solid and micropapillary components in lung invasive adenocarcinoma. Final data were obtained by repeating tenfold cross-validation 10 times. Two independent radiologists visually predicted solid or micropapillary components on each image of the 64 nodules with and without using the radiomics results. The quantitative values were analyzed with logistic regression models. The receiver operating characteristic curves were generated to predict of solid and micropapillary components. P values < 0.05 were considered significant. RESULTS: Two features (Coefficient Variation and Entropy) were independent indicators associated with solid and micropapillary components (odds ratio, 30.5 and 11.4; 95% confidence interval, 5.1-180.5 and 1.9-66.6; and P = 0.0002 and 0.0071, respectively). The area under the curve for predicting solid and micropapillary components was 0.902 (95% confidence interval, 0.802 to 0.962). The radiomics results significantly improved the accuracy and specificity of the prediction of the two radiologists. CONCLUSION: Two texture features (Coefficient Variation and Entropy) were significant indicators to predict solid and micropapillary components in lung invasive adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Female , Male , Retrospective Studies , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Tomography, X-Ray Computed/methods , Middle Aged , Aged , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Radiographic Image Interpretation, Computer-Assisted/methods , Neoplasm Invasiveness/diagnostic imaging , Predictive Value of Tests , Aged, 80 and over , Adult , Lung/diagnostic imaging , Lung/pathology , Radiomics
9.
Radiol Artif Intell ; 6(1): e230488, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38166327
10.
Jpn J Radiol ; 42(1): 3-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37540463

ABSTRACT

In this review, we address the issue of fairness in the clinical integration of artificial intelligence (AI) in the medical field. As the clinical adoption of deep learning algorithms, a subfield of AI, progresses, concerns have arisen regarding the impact of AI biases and discrimination on patient health. This review aims to provide a comprehensive overview of concerns associated with AI fairness; discuss strategies to mitigate AI biases; and emphasize the need for cooperation among physicians, AI researchers, AI developers, policymakers, and patients to ensure equitable AI integration. First, we define and introduce the concept of fairness in AI applications in healthcare and radiology, emphasizing the benefits and challenges of incorporating AI into clinical practice. Next, we delve into concerns regarding fairness in healthcare, addressing the various causes of biases in AI and potential concerns such as misdiagnosis, unequal access to treatment, and ethical considerations. We then outline strategies for addressing fairness, such as the importance of diverse and representative data and algorithm audits. Additionally, we discuss ethical and legal considerations such as data privacy, responsibility, accountability, transparency, and explainability in AI. Finally, we present the Fairness of Artificial Intelligence Recommendations in healthcare (FAIR) statement to offer best practices. Through these efforts, we aim to provide a foundation for discussing the responsible and equitable implementation and deployment of AI in healthcare.


Subject(s)
Artificial Intelligence , Radiology , Humans , Algorithms , Radiologists , Delivery of Health Care
11.
J Radiat Res ; 65(1): 1-9, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37996085

ABSTRACT

This review provides an overview of the application of artificial intelligence (AI) in radiation therapy (RT) from a radiation oncologist's perspective. Over the years, advances in diagnostic imaging have significantly improved the efficiency and effectiveness of radiotherapy. The introduction of AI has further optimized the segmentation of tumors and organs at risk, thereby saving considerable time for radiation oncologists. AI has also been utilized in treatment planning and optimization, reducing the planning time from several days to minutes or even seconds. Knowledge-based treatment planning and deep learning techniques have been employed to produce treatment plans comparable to those generated by humans. Additionally, AI has potential applications in quality control and assurance of treatment plans, optimization of image-guided RT and monitoring of mobile tumors during treatment. Prognostic evaluation and prediction using AI have been increasingly explored, with radiomics being a prominent area of research. The future of AI in radiation oncology offers the potential to establish treatment standardization by minimizing inter-observer differences in segmentation and improving dose adequacy evaluation. RT standardization through AI may have global implications, providing world-standard treatment even in resource-limited settings. However, there are challenges in accumulating big data, including patient background information and correlating treatment plans with disease outcomes. Although challenges remain, ongoing research and the integration of AI technology hold promise for further advancements in radiation oncology.


Subject(s)
Neoplasms , Radiation Oncology , Radiotherapy, Image-Guided , Humans , Artificial Intelligence , Radiotherapy Planning, Computer-Assisted/methods , Neoplasms/radiotherapy , Radiation Oncology/methods
12.
Rheumatology (Oxford) ; 62(SI3): SI286-SI295, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37871923

ABSTRACT

OBJECTIVE: To investigate the prevalence and mortality impact of interstitial lung abnormalities (ILAs) in RA and non-RA comparators. METHODS: We analysed associations between ILAs, RA, and mortality in COPDGene, a multicentre prospective cohort study of current and past smokers, excluding known interstitial lung disease (ILD) or bronchiectasis. All participants had research chest high-resolution CT (HRCT) reviewed by a sequential reading method to classify ILA as present, indeterminate or absent. RA cases were identified by self-report RA and DMARD use; non-RA comparators had neither an RA diagnosis nor used DMARDs. We examined the association and mortality risk of RA and ILA using multivariable logistic regression and Cox regression. RESULTS: We identified 83 RA cases and 8725 non-RA comparators with HRCT performed for research purposes. ILA prevalence was 16.9% in RA cases and 5.0% in non-RA comparators. After adjusting for potential confounders, including genetics, current/past smoking and other lifestyle factors, ILAs were more common among those with RA compared with non-RA [odds ratio 4.76 (95% CI 2.54, 8.92)]. RA with ILAs or indeterminate for ILAs was associated with higher all-cause mortality compared with non-RA without ILAs [hazard ratio (HR) 3.16 (95% CI 2.11, 4.74)] and RA cases without ILA [HR 3.02 (95% CI 1.36, 6.75)]. CONCLUSIONS: In this cohort of smokers, RA was associated with ILAs and this persisted after adjustment for current/past smoking and genetic/lifestyle risk factors. RA with ILAs in smokers had a 3-fold increased all-cause mortality, emphasizing the importance of further screening and treatment strategies for preclinical ILD in RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Prospective Studies , Smokers , Prevalence , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Lung
13.
J Clin Med ; 12(17)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37685677

ABSTRACT

Background: Dual-energy CT has been reported to be useful for differentiating thymic epithelial tumors. The purpose is to evaluate thymic epithelial tumors by using three-dimensional (3D) iodine density histogram texture analysis on dual-energy CT and to investigate the association of extracellular volume fraction (ECV) with the fibrosis of thymic carcinoma. Methods: 42 patients with low-risk thymoma (n = 20), high-risk thymoma (n = 16), and thymic carcinoma (n = 6) were scanned by dual-energy CT. 3D iodine density histogram texture analysis was performed for each nodule on iodine density mapping: Seven texture features (max, min, median, average, standard deviation [SD], skewness, and kurtosis) were obtained. The iodine effect (average on DECT180s-average on unenhanced DECT) and ECV on DECT180s were measured. Tissue fibrosis was subjectively rated by one pathologist on a three-point grade. These quantitative data obtained by examining associations with thymic carcinoma and high-risk thymoma were analyzed with univariate and multivariate logistic regression models (LRMs). The area under the curve (AUC) was calculated by the receiver operating characteristic curves. p values < 0.05 were significant. Results: The multivariate LRM showed that ECV > 21.47% in DECT180s could predict thymic carcinoma (odds ratio [OR], 11.4; 95% confidence interval [CI], 1.18-109; p = 0.035). Diagnostic performance was as follows: Sensitivity, 83.3%; specificity, 69.4%; AUC, 0.76. In high-risk thymoma vs. low-risk thymoma, the multivariate LRM showed that the iodine effect ≤1.31 mg/cc could predict high-risk thymoma (OR, 7; 95% CI, 1.02-39.1; p = 0.027). Diagnostic performance was as follows: Sensitivity, 87.5%; specificity, 50%; AUC, 0.69. Tissue fibrosis significantly correlated with thymic carcinoma (p = 0.026). Conclusions: ECV on DECT180s related to fibrosis may predict thymic carcinoma from thymic epithelial tumors, and the iodine effect on DECT180s may predict high-risk thymoma from thymoma.

15.
Ann Nucl Med ; 37(11): 583-595, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37749301

ABSTRACT

The radiopharmaceutical 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) has been dominantly used in positron emission tomography (PET) scans for over 20 years, and due to its vast utility its applications have expanded and are continuing to expand into oncology, neurology, cardiology, and infectious/inflammatory diseases. More recently, the addition of artificial intelligence (AI) has enhanced nuclear medicine diagnosis and imaging with FDG-PET, and new radiopharmaceuticals such as prostate-specific membrane antigen (PSMA) and fibroblast activation protein inhibitor (FAPI) have emerged. Nuclear medicine therapy using agents such as [177Lu]-dotatate surpasses conventional treatments in terms of efficacy and side effects. This article reviews recently established evidence of FDG and non-FDG drugs and anticipates the future trajectory of nuclear medicine.

16.
Radiol Med ; 128(10): 1236-1249, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37639191

ABSTRACT

Although there is no solid agreement for artificial intelligence (AI), it refers to a computer system with intelligence similar to that of humans. Deep learning appeared in 2006, and more than 10 years have passed since the third AI boom was triggered by improvements in computing power, algorithm development, and the use of big data. In recent years, the application and development of AI technology in the medical field have intensified internationally. There is no doubt that AI will be used in clinical practice to assist in diagnostic imaging in the future. In qualitative diagnosis, it is desirable to develop an explainable AI that at least represents the basis of the diagnostic process. However, it must be kept in mind that AI is a physician-assistant system, and the final decision should be made by the physician while understanding the limitations of AI. The aim of this article is to review the application of AI technology in diagnostic imaging from PubMed database while particularly focusing on diagnostic imaging in thorax such as lesion detection and qualitative diagnosis in order to help radiologists and clinicians to become more familiar with AI in thorax.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Algorithms , Thorax , Diagnostic Imaging
17.
Magn Reson Med Sci ; 22(4): 401-414, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37532584

ABSTRACT

Due primarily to the excellent soft tissue contrast depictions provided by MRI, the widespread application of head and neck MRI in clinical practice serves to assess various diseases. Artificial intelligence (AI)-based methodologies, particularly deep learning analyses using convolutional neural networks, have recently gained global recognition and have been extensively investigated in clinical research for their applicability across a range of categories within medical imaging, including head and neck MRI. Analytical approaches using AI have shown potential for addressing the clinical limitations associated with head and neck MRI. In this review, we focus primarily on the technical advancements in deep-learning-based methodologies and their clinical utility within the field of head and neck MRI, encompassing aspects such as image acquisition and reconstruction, lesion segmentation, disease classification and diagnosis, and prognostic prediction for patients presenting with head and neck diseases. We then discuss the limitations of current deep-learning-based approaches and offer insights regarding future challenges in this field.


Subject(s)
Artificial Intelligence , Head , Humans , Head/diagnostic imaging , Neck/diagnostic imaging , Magnetic Resonance Imaging , Neural Networks, Computer
18.
Diagn Interv Imaging ; 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37407346

ABSTRACT

Recent advances in artificial intelligence (AI) for cardiac computed tomography (CT) have shown great potential in enhancing diagnosis and prognosis prediction in patients with cardiovascular disease. Deep learning, a type of machine learning, has revolutionized radiology by enabling automatic feature extraction and learning from large datasets, particularly in image-based applications. Thus, AI-driven techniques have enabled a faster analysis of cardiac CT examinations than when they are analyzed by humans, while maintaining reproducibility. However, further research and validation are required to fully assess the diagnostic performance, radiation dose-reduction capabilities, and clinical correctness of these AI-driven techniques in cardiac CT. This review article presents recent advances of AI in the field of cardiac CT, including deep-learning-based image reconstruction, coronary artery motion correction, automatic calcium scoring, automatic epicardial fat measurement, coronary artery stenosis diagnosis, fractional flow reserve prediction, and prognosis prediction, analyzes current limitations of these techniques and discusses future challenges.

19.
Lung Cancer ; 182: 107278, 2023 08.
Article in English | MEDLINE | ID: mdl-37321075

ABSTRACT

OBJECTIVES: Limited treatment options are available for non-small cell lung cancer (NSCLC) patients with interstitial lung disease (ILD). The rationale for immunotherapy and its adverse events for NSCLC with ILD remains unclear. In this study, we examined T cell profiles and functions in the lung tissues of NSCLC patients with or without ILD to provide evidence for the potential mechanism of immune checkpoint inhibitor (ICI)-related pneumonitis in NSCLC patients with ILD. MATERIAL AND METHODS: We investigated T cell immunity in the lung tissues of NSCLC patients with ILD to support the application of immunotherapy for these patients. We analyzed T cell profiles and functions in surgically resected lung tissues from NSCLC patients with and without ILD. The T cell profiles of infiltrating cells in lung tissues were analyzed by flow cytometry. T cell functions were measured based on cytokine production by T cells stimulated with phorbol 12-myristate 13-acetate and ionomycin. RESULTS: The percentages of CD4+ T cells expressing immune checkpoint molecules (Tim-3, ICOS, and 4-1BB), CD103+CD8+ T cells, and regulatory T (Treg) cells were higher in NSCLC patients with than in those without ILD. A functional analysis of T cells in lung tissues indicated that CD103+CD8+ T cells positively correlated with IFNγ production, whereas Treg cells negatively correlated with IFNγ and TNFα production. Cytokine production by CD4+ and CD8+ T cells did not significantly differ between NSCLC patients with and without ILD, except for TNFα production by CD4+ T cells being lower in the former than in the latter. CONCLUSION: In NSCLC patients with ILD stable for surgery, T cells were active participants and balanced in part by Treg cells in lung tissues, suggesting the potential development of ICI-related pneumonitis in NSCLC patients with ILD.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Diseases, Interstitial , Lung Neoplasms , Pneumonia , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/therapy , CD8-Positive T-Lymphocytes , Tumor Necrosis Factor-alpha , Retrospective Studies
20.
Radiol Med ; 128(6): 655-667, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37165151

ABSTRACT

This review outlines the current status and challenges of the clinical applications of artificial intelligence in liver imaging using computed tomography or magnetic resonance imaging based on a topic analysis of PubMed search results using latent Dirichlet allocation. LDA revealed that "segmentation," "hepatocellular carcinoma and radiomics," "metastasis," "fibrosis," and "reconstruction" were current main topic keywords. Automatic liver segmentation technology using deep learning is beginning to assume new clinical significance as part of whole-body composition analysis. It has also been applied to the screening of large populations and the acquisition of training data for machine learning models and has resulted in the development of imaging biomarkers that have a significant impact on important clinical issues, such as the estimation of liver fibrosis, recurrence, and prognosis of malignant tumors. Deep learning reconstruction is expanding as a new technological clinical application of artificial intelligence and has shown results in reducing contrast and radiation doses. However, there is much missing evidence, such as external validation of machine learning models and the evaluation of the diagnostic performance of specific diseases using deep learning reconstruction, suggesting that the clinical application of these technologies is still in development.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Artificial Intelligence , Carcinoma, Hepatocellular/diagnostic imaging , Tomography, X-Ray Computed , Liver Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...