Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
JCI Insight ; 9(12)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912589

ABSTRACT

Spermatogenesis requires precise posttranslational control in the endoplasmic reticulum (ER), but the mechanism remains largely unknown. The protein disulfide isomerase (PDI) family is a group of thiol oxidoreductases responsible for catalyzing the disulfide bond formation of nascent proteins. In this study, we generated 14 strains of KO mice lacking the PDI family enzymes and found that only PDI deficiency caused spermatogenesis defects. Both inducible whole-body PDI-KO (UBC-Cre/Pdifl/fl) mice and premeiotic PDI-KO (Stra8-Cre/Pdifl/fl) mice experienced a significant decrease in germ cells, testicular atrophy, oligospermia, and complete male infertility. Stra8-Cre/Pdifl/fl spermatocytes had significantly upregulated ER stress-related proteins (GRP78 and XBP1) and apoptosis-related proteins (Cleaved caspase-3 and BAX), together with cell apoptosis. PDI deletion led to delayed DNA double-strand break repair and improper crossover at the pachytene spermatocytes. Quantitative mass spectrometry indicated that PDI deficiency downregulated vital proteins in spermatogenesis such as HSPA4L, SHCBP1L, and DDX4, consistent with the proteins' physical association with PDI in normal testes tissue. Furthermore, PDI served as a thiol oxidase for disulfide bond formation of SHCBP1L. Thus, PDI plays an essential role in protein quality control for spermatogenesis in mice.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Mice, Knockout , Protein Disulfide-Isomerases , Spermatogenesis , Testis , Animals , Male , Spermatogenesis/genetics , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Mice , Testis/metabolism , Endoplasmic Reticulum Chaperone BiP/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Infertility, Male/pathology , Apoptosis , Spermatocytes/metabolism , Endoplasmic Reticulum Stress , Oligospermia/genetics , Oligospermia/metabolism , Oligospermia/pathology
2.
Nat Commun ; 15(1): 3129, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605050

ABSTRACT

The essence of difference between hemostasis and thrombosis is that the clotting reaction is a highly fine-tuned process. Vascular protein disulfide isomerase (PDI) represents a critical mechanism regulating the functions of hemostatic proteins. Herein we show that histidine-rich glycoprotein (HRG) is a substrate of PDI. Reduction of HRG by PDI enhances the procoagulant and anticoagulant activities of HRG by neutralization of endothelial heparan sulfate (HS) and inhibition of factor XII (FXIIa) activity, respectively. Murine HRG deficiency (Hrg-/-) leads to delayed onset but enhanced formation of thrombus compared to WT. However, in the combined FXII deficiency (F12-/-) and HRG deficiency (by siRNA or Hrg-/-), there is further thrombosis reduction compared to F12-/- alone, confirming HRG's procoagulant activity independent of FXIIa. Mutation of target disulfides of PDI leads to a gain-of-function mutant of HRG that promotes its activities during coagulation. Thus, PDI-HRG pathway fine-tunes thrombosis by promoting its rapid initiation via neutralization of HS and preventing excessive propagation via inhibition of FXIIa.


Subject(s)
Protein Disulfide-Isomerases , Proteins , Thrombosis , Animals , Mice , Disulfides , Factor XII/metabolism , Heparitin Sulfate , Protein Disulfide-Isomerases/genetics , Proteins/metabolism , Thrombosis/genetics , Thrombosis/metabolism
3.
Photodiagnosis Photodyn Ther ; 47: 104102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679153

ABSTRACT

BACKGROUND: Hematoporphyrin derivatives (HPD)-Photodynamic therapy (PDT) in combination with cisplatin (DDP) is an effective anticancer strategy. However, whether the order of combination affects efficacy has not been studied. METHODS: The human lung adenocarcinoma (LUAD) A549 cells were used as the study subjects. After A549 cells were treated with a single medication (PDT/DDP) or a sequential combination (PDT + DDP / DDP + PDT), the cell viability was assayed using the cell counting kit-8 method. Hoechst staining, Annexin-V/propidium iodide (PI) double staining, western blotting, and a real-time quantitative polymerase chain reaction (RT-qPCR) were performed to examine the mechanisms behind the combined effects. RESULTS: A synergistic impact between HPD-PDT and DDP was found. The cell viability in the PDT+DDP group was significantly lower than in the DDP+PDT group. A significant apoptotic profile and a high apoptotic rate were seen in the PDT + DDP group. The western blot showed that the expression levels of Bcl2-associated x(Bax) and cleaved-poly ADP-ribose polymerase (PARP) increased, and those of B-cell lymphoma-2 (Bcl-2) and Caspase-9 decreased in the PDT + DDP group. At the same time, the RT-qPCR revealed the upregulation of Bax and PARP mRNA and the downregulation of Bcl-2 and Caspase-9 mRNA. CONCLUSION: The order of the combination therapy (PDT + DDP / DDP + PDT) was important. The HPD-PDT followed by DDP significantly inhibited LUAD cell viability, which may be related to the mitochondrial apoptotic pathway.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Survival , Cisplatin , Lung Neoplasms , Photochemotherapy , Photosensitizing Agents , Humans , Photochemotherapy/methods , Cisplatin/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Cell Survival/drug effects , Apoptosis/drug effects , Lung Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , A549 Cells , Adenocarcinoma/drug therapy , Adenocarcinoma of Lung/drug therapy , Hematoporphyrins/pharmacology , Hematoporphyrin Derivative/pharmacology , Cell Line, Tumor
4.
Cell Commun Signal ; 21(1): 195, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537628

ABSTRACT

Tyro3, Axl, and Mertk (abbreviated TAMs) comprise a family of homologous type 1 receptor tyrosine kinases (RTKs) that have been implicated as inhibitory receptors that dampen inflammation, but their roles in the pathogenesis of rheumatoid arthritis remains understudied. Here, to investigate TAMs in an inflammatory arthritis model, antibody-induced arthritis in single TAM-deficient mice (Tyro3- KO, Axl-KO, Mertk-KO) was induced by K/BxN serum injection. Subsequently, joint inflammation and cytokine levels, as well as the expression of Fcγ Rs and complement receptors were assessed in WT and TAM-deficient mice. Compared with littermate control mice, Axl-/- and Mertk-/- mice developed more severe antibody-induced arthritis, while in contrast, Tyro3-/- mice showed diminished joint inflammation. Concomitantly, the levels of cytokines in joints of Axl-/- and Mertk-/- mice were also significantly increased, while cytokines in the Tyro3-/- joint tissues were decreased. At the molecular and cellular level, TAMs showed distinct expression patterns, whereby monocytes expressed Axl and Mertk, but no Tyro3, while neutrophils expressed Axl and Tyro3 but little Mertk. Moreover, expression of Fcγ receptors and C5aR showed different patterns with TAMs expression, whereby FcγRIV was higher in monocytes of Axl-/- and Mertk-/- mice compared to wild-type mice, while Tyro3-/- neutrophils showed lower expression levels of FcγRI, FcγRIII and FcγRIV. Finally, expression of C5aR was increased in Mertk-/- monocytes, and was decreased in Tyro3-/- neutrophils. These data indicate that Axl, Mertk and Tyro3 have distinct functions in antibody-induced arthritis, due in part to the differential regulation of cytokines production, as well as expression of FcγRs and C5aR. Video Abstract.


Subject(s)
Arthritis , Axl Receptor Tyrosine Kinase , Receptor Protein-Tyrosine Kinases , Receptors, IgG , c-Mer Tyrosine Kinase , Animals , Mice , Antibodies , Axl Receptor Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/metabolism , Carrier Proteins , Cytokines/metabolism , Inflammation , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, IgG/metabolism , Tyrosine
6.
BMC Biotechnol ; 23(1): 24, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507705

ABSTRACT

BACKGROUND: Biological laboratories and companies involved in antibody development need convenient and versatile methods to detect highly active antibodies. METHODS: To develop a mammalian cell-based ZZ display system for antibody quantification, the eukaryotic ZZ-displayed plasmid was constructed and transfected into CHO cells. After screening by flow cytometric sorting, the stable ZZ display cells were incubated with reference IgG and samples with unknown IgG content for 40 min at 4℃, the relative fluorescence intensity of cells was analyzed and the concentration of IgG was calculated. RESULTS: By investigating the effects of different display-associated genetic elements, a eukaryotic ZZ-displaying plasmid with the highest display efficiency were constructed. After transfection and screening, almost 100% of the cells were able to display the ZZ peptide (designated CHO-ZZ cells). These stable CHO-ZZ cells were able to capture a variety of IgG, including human, rabbit, donkey and even mouse and goat. CHO-ZZ cells could be used to quantify human IgG in the range of approximately 12.5-1000 ng/mL, and to identify high-yielding engineered monoclonal cell lines. CONCLUSIONS: We have established a highly efficient CHO-ZZ display system in this study, which enables the quantification of IgG from various species under physiological conditions. This system offers the advantage of eliminating the need for antibody purification and will contribute to antibody development.


Subject(s)
Immunoglobulin G , Cricetinae , Mice , Rabbits , Animals , Humans , Cricetulus , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Flow Cytometry , Plasmids
8.
Nat Commun ; 13(1): 7114, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402779

ABSTRACT

Pulmonary fibrosis is a chronic interstitial lung disease that causes irreversible and progressive lung scarring and respiratory failure. Activation of fibroblasts plays a central role in the progression of pulmonary fibrosis. Here we show that platelet endothelial aggregation receptor 1 (PEAR1) in fibroblasts may serve as a target for pulmonary fibrosis therapy. Pear1 deficiency in aged mice spontaneously causes alveolar collagens accumulation. Mesenchyme-specific Pear1 deficiency aggravates bleomycin-induced pulmonary fibrosis, confirming that PEAR1 potentially modulates pulmonary fibrosis progression via regulation of mesenchymal cell function. Moreover, single cell and bulk tissue RNA-seq analysis of pulmonary fibroblast reveals the expansion of Activated-fibroblast cluster and enrichment of marker genes in extracellular matrix development in Pear1-/- fibrotic lungs. We further show that PEAR1 associates with Protein Phosphatase 1 to suppress fibrotic factors-induced intracellular signalling and fibroblast activation. Intratracheal aerosolization of monoclonal antibodies activating PEAR1 greatly ameliorates pulmonary fibrosis in both WT and Pear1-humanized mice, significantly improving their survival rate.


Subject(s)
Pulmonary Fibrosis , Mice , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Mice, Inbred C57BL , Fibroblasts/metabolism , Extracellular Matrix/metabolism , Bleomycin/toxicity
9.
Arch Insect Biochem Physiol ; 110(3): e21895, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35373383

ABSTRACT

Plant-associated microbes have been reported as important but overlooked drivers of plant-herbivorous insect interactions. Influence of plant-associated microbes on plant-insect interactions is diverse, including beneficial, detrimental, and neutral. Here, we determined the effects of three Penicillium fungi, including Penicillium citrinum, Penicillium sumatrense, and Penicillium digitatum, on the oviposition selection and behavior of the yellow peach moth (YPM), Conogethes punctiferalis (Guenée). Compared with fungi noninfected apples (NIA), mechanically damaged apples (MDA), and P. citrinum in potato dextrose agar medium (PC), the oviposition selection and four-arm olfactometer experiments both showed that mated YPM females preferred to P. citrinum-infected apples (PCA). For P. sumatrense or P. digitatum, we also found that mated YPM females preferred to P. sumatrense-infected apples (PSA) or P. digitatum-infected apples (PDA), respectively. Among three Penicillium fungi-infected apples, the selection rates including oviposition and olfactometer behavior of mated YPM females on PDA were both higher than those on PSA and PCA. Further analyses of host plant volatile organic compounds (VOCs) by GC-MS showed that the absolute contents of ethyl hexanoate and (Z, E)-α-farnesene in PCA, PSA, and PDA were all higher than those in NIA, and a total of 16 novel VOCs were detected in fungi-infected apples (PCA, PSA, and PDA), indicating that fungi infection changed the components and proportions of apple VOCs. Taken together, three Penicillium fungi play significant roles in mediating the host selection of YPMs via altering the emissions of VOCs. These findings will be beneficial for developing formulations for field trapping of YPMs in the future.


Subject(s)
Malus , Moths , Penicillium , Prunus persica , Volatile Organic Compounds , Animals , Female , Fruit/microbiology , Malus/microbiology , Moths/physiology , Volatile Organic Compounds/pharmacology
10.
PhytoKeys ; 211: 13-32, 2022.
Article in English | MEDLINE | ID: mdl-36760730

ABSTRACT

Critical examinations of specimens, with literature reviews, have shown that Rubusdavidianus is conspecific with R.lambertianus. Therefore, we treat R.davidianus as a new synonym within Rubus. We propose a new name, Rubusloirensis Ti R. Huang nom. nov. to replace the later homonym of R.pycnanthus Genev. Additionally, lectotypification of three names, R.davidianus Kuntze, R.malifolius Focke and R.viburnifolius Franch., are designated here after examination of previous works.

11.
Front Oncol ; 11: 740557, 2021.
Article in English | MEDLINE | ID: mdl-34765550

ABSTRACT

Icaritin is a potential treatment option for hepatocellular carcinoma (HCC) based on the results of its phase 2 stage trial. Glucose transporter 1 (GLUT1), a critical gene in regulating glycolysis, has been recognized as a promising target in HCC treatment. Previous studies have reported that FAM99A, a new long noncoding (lncRNA), is associated with HCC metastasis. It has also been demonstrated that the JAK2/STAT3 pathway is related to HCC and is the target of icaritin treatment. However, whether FAM99A participates in icaritin treatment and regulates GLUT1-mediated glycolysis via the JAK2/STAT3 pathway in HCC cells remains to be explored. Our study aimed to clarify the mechanisms underlying glycolysis and understand the regulating effects of the FAM99A and JAK2/STAT3 pathway in HCC cells in icaritin treatment. Molecular mechanism studies were conducted to verify whether FAM99A could bind to the JAK2/STAT3 pathway and to identify the regulatory mechanisms in the HCC cells. It was revealed that icaritin inhibited proliferation, GLUT1 level, and the glycolysis of the HCC cells. FAM99A in HCC cells was upregulated after a high concentration treatment of icaritin. FAM99A inhibited GLUT1 by blocking the JAK2/STAT3 pathway. Mechanically, FAM99A interacted with EIF4B to inhibit gp130 and gp80 translation, which then interacted with miR-299-5p to upregulate SOCS3, causing the JAK2 pathway to inhibit STAT3 phosphorylation, so that JAK2/STAT3 was blocked in HCC cells. Overall, our study proved that icaritin-induced FAM99A can inhibit HCC cell viability and GLUT1-mediated glycolysis via blocking the JAK2/STAT3 pathway.

12.
Thromb J ; 19(1): 94, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838051

ABSTRACT

BACKGROUND: Type 3 von Willebrand disease (VWD) exhibits severe hemorrhagic tendency with complicated pathogenesis. The C-terminal cystine knot (CTCK) domain plays an important role in the dimerization and secretion of von Willebrand factor (VWF). The CTCK domain has four intrachain disulfide bonds including Cys2724-Cys2774, Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806, and the single cysteine mutation in Cys2739-Cys2788, Cys2750-Cys2804 and Cys2754-Cys2806 result in type 3 VWD, demonstrating the crucial role of these three disulfide bonds in VWF biosynthesis, however, the role of the remaining disulfide bond Cys2724-Cys2774 remains unclear. METHOD AND RESULTS: In this study, by the next-generation sequencing we found a missense mutation a c.8171G>A (C2724Y) in the CTCK domain of VWF allele in a patient family with type 3 VWD. In vitro, VWF C2724Y protein was expressed normally in HEK-293T cells but did not form a dimer or secrete into cell culture medium, suggesting that C2724 is critical for the VWF dimerization, and thus for VWF multimerization and secretion. CONCLUSIONS: Our findings provide the first genetic evidence for the important role of Cys2724-Cys2774 in VWF biosynthesis and secretion. Therefore, all of the four intrachain disulfide bonds in CTCK monomer contribute to VWF dimerization and secretion.

13.
Front Microbiol ; 12: 672620, 2021.
Article in English | MEDLINE | ID: mdl-34413835

ABSTRACT

An extracellular laccase (GLL) was purified from fermentation broth of the litter-decomposing fungus Gymnopus luxurians by four chromatography steps, which resulted in a high specific activity of 118.82 U/mg, purification fold of 41.22, and recovery rate of 42.05%. It is a monomeric protein with a molecular weight of 64 kDa and N-terminal amino acid sequence of AIGPV TDLHI, suggesting that GLL is a typical fungal laccase. GLL demonstrated an optimum temperature range of 55°C-65°C and an optimum pH 2.2 toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). It displayed considerably high thermostability and pH stability with about 63% activity retained after 24 h at 50°C, and 86% activity retained after 24 h at pH 2.2, respectively. GLL was significantly enhanced in the presence of K+, Na+, and Mg2+ ions. It demonstrated K m of 539 µM and k cat /K m of 140 mM-1⋅s-1 toward ABTS at pH 2.2 and 37°C. Acetosyringone (AS) and syringaldehyde (SA) were the optimal mediators of GLL (0.4 U/ml) for dye decolorization with decolorization rates of about 60%-90% toward 11 of the 14 synthetic dyes. The optimum reaction conditions were determined to be mediator concentration of 0.1 mM, temperature range of 25°C -60°C, and pH 4.0. The purified laccase was the first laccase isolated from genus Gymnopus with high thermostability, pH stability, and effective decolorization toward dyes, suggesting that it has potentials for textile and environmental applications.

14.
Biochem Biophys Res Commun ; 518(3): 409-415, 2019 10 20.
Article in English | MEDLINE | ID: mdl-31451224

ABSTRACT

Particulate matter (PM) is a key component of air pollutants and is associated with mortality of cardiovascular and respiratory diseases. PM-induced tissue injury involves inflammation and coagulation. Plasma prekallikrein (pKal), along with coagulation factor XII (FXII) and high-molecular-weight kininogen (HK), form the plasma kallikrein-kinin system (KKS), a component of the innate immune response that generates proinflammatory products in response to injury. When the KKS proteins contact with activation surface such as negatively charged molecules, this system becomes activated. Activated kallikrein (Kal) activates FXII to initiate the intrinsic coagulation pathway, and cleaves HK to release bradykinin to enhance vascular permeability and systemic inflammation. In his study we determined the role of plasma pKal in the PM2.5-induced lung injury. Using TALEN technology, we generated a new mouse strain lacking the gene for pKal. In PM2.5-induced lung injury model, Klkb1-/- mice exhibited a decrease in total protein, cells numbers in bronchoalveolar lavage fluid (BALF) and histologic lung injury score. The TNF-α and IL-6 levels in BALF were significantly decreased in PM2.5-treated Klkb1-/- mice. Plasma thrombin-antithrombin (TAT) complex levels were significantly decreased in PM2.5-treated Klkb1-/- mice. PM2.5 induces pKal activation, HK cleavage and bradykinin production. PM2.5-induced HK cleavage in plasma was completely blocked by a Kal inhibitor, as well as in pKal-deficient plasma. PM2.5 markedly induced thrombin generation in human plasma and wild-type mouse plasma, which was inhibited by both blockade and deficiency of pKal. Taken together, plasma pKal is activated by PM2.5 and the activated Kal plays an important role in PM2.5-induced lung injury.


Subject(s)
Blood Coagulation , Inflammation/etiology , Lung Injury/etiology , Particulate Matter/adverse effects , Plasma Kallikrein/immunology , Animals , Gene Deletion , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/immunology , Lung Injury/blood , Lung Injury/genetics , Lung Injury/immunology , Mice , Mice, Knockout , Particulate Matter/immunology , Plasma Kallikrein/analysis , Plasma Kallikrein/genetics
15.
Biol Pharm Bull ; 42(6): 900-905, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30930425

ABSTRACT

The present study aims to investigate the effects of ginsenoside Rg3 combined with oxaliplatin on the proliferation and apoptosis of hepatocellular carcinoma cells and the related mechanism. In this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to examine the proliferation rate of hepatocellular carcinoma cell SMMC-7721 with different treatment. Flow cytometry was performed to examine apoptosis rate of hepatocellular carcinoma cells with different treatment. Immunofluorescence and Western blot methods were used to evaluate the expressions of proliferating cell nuclear antigen (PCNA) and cyclin D1 in different groups. We found that ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin significantly suppressed the proliferation and promoted the apoptosis of SMMC-7721. Meanwhile, ginsenoside Rg3, oxaliplatin or ginsenoside Rg3 + oxaliplatin also significantly inhibited the expressions of PCNA and cyclin D1. Moreover, compared with ginsenoside Rg3 group and oxaliplatin group, the effect of ginsenoside Rg3 + oxaliplatin was more remarkable. Taken together, cells treated with oxaliplatin+ ginsenoside enhanced the anti-tumor effect and may inhibit the proliferation and promoted apoptosis of hepatocellular carcinoma via regulating the expression of PCNA and cyclin D1.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Hepatocellular/drug therapy , Cyclin D1/metabolism , Ginsenosides/pharmacology , Liver Neoplasms/drug therapy , Oxaliplatin/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Apoptosis/drug effects , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Synergism , Ginsenosides/administration & dosage , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Oxaliplatin/administration & dosage
16.
Blood ; 133(3): 246-251, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30425049

ABSTRACT

Secreted platelet protein disulfide isomerases, PDI, ERp57, ERp5, and ERp72, have important roles as positive regulators of platelet function and thrombosis. Thioredoxin-related transmembrane protein 1 (TMX1) was the first described transmembrane member of the protein disulfide isomerase family of enzymes. Using a specific antibody, the recombinant extracellular domain of TMX1 (rTMX1) protein, a knockout mouse model, and a thiol-labeling approach, we examined the role of TMX1 in platelet function and thrombosis. Expression of TMX1 on the platelet surface increased with thrombin stimulation. The anti-TMX1 antibody increased platelet aggregation induced by convulxin and thrombin, as well as potentiated platelet ATP release. In contrast, rTMX1 inhibited platelet aggregation and ATP release. TMX1-deficient platelets had increased aggregation, ATP release, αIIbß3 activation, and P-selectin expression, which were reversed by addition of rTMX1. TMX1-knockout mice had increased incorporation of platelets into a growing thrombus in an FeCl3-induced mesenteric arterial injury model, as well as shortened tail-bleeding times. rTMX1 oxidized thiols in the αIIbß3 integrin and TMX1-deficient platelets had increased thiols in the ß3 subunit of αIIbß3, consistent with oxidase activity of rTMX1 against αIIbß3. Thus, TMX1 is the first identified extracellular inhibitor of platelet function and the first disulfide isomerase that negatively regulates platelet function.


Subject(s)
Blood Platelets/pathology , Membrane Proteins/metabolism , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thioredoxins/metabolism , Thrombosis/pathology , Animals , Blood Platelets/metabolism , Hemostasis , Humans , Mice , Mice, Knockout , Thrombosis/metabolism
18.
Cell Commun Signal ; 16(1): 98, 2018 12 12.
Article in English | MEDLINE | ID: mdl-30541554

ABSTRACT

BACKGROUND: Previously, several studies have shown that Tyro3, Axl, and Mertk (TAM) receptors participate in platelet activation and thrombosis. However, the role of individual receptors is not fully understood. METHODS: Using single receptor-deficient platelets from TAM knockout mice in the C57BL/6 J strain, we performed a knockout study using single TAM-deficient mice. We treated platelets isolated from TAM knockout mice with the Glycoprotein VI (GPVI) agonists convulxin, poly(PHG), and collagen-related triple-helical peptide (CRP), as well as thrombin for in-vitro experiments. We used a laser-induced cremaster arterial injury model for thrombosis experiments in vivo. RESULTS: Deficiency of the tyrosine kinase receptors, Axl or Tyro3, but not Mertk, inhibited aggregation, spreading, JON/A binding, and P-selectin expression of platelets in vitro. In vivo, platelet thrombus formation was significantly decreased in Axl-/- and Tyro3-/- mice, but not in Mertk-/- mice. Upon stimulation with glycoprotein VI (GPVI) agonists, tyrosine phosphorylation of signaling molecules, including spleen tyrosine kinase (Syk) and phospholipase C-γ2 (PLCγ2), was decreased in Axl-/- and Tyro3-/- platelets, but not in Mertk-/- platelets. While platelet aggregation induced by agonists did not differ in the presence or absence of the Gas6 neutralizing antibody, the platelet aggregation was inhibited by anti-Axl or anti-Tyro3 neutralizing antibodies antibody, but not the anti-Mertk antibody. Additionally, the recombinant extracellular domain of Axl or Tyro3, but not that of Mertk, also inhibited platelet aggregation. CONCLUSIONS: These data suggest that Axl and Tyro3, but not Mertk, have an important role in platelet activation and thrombus formation, and mechanistically may do so by a pathway that regulates inside to outside signaling and heterotypic interactions via the extracellular domains of TAMs.


Subject(s)
Platelet Activation , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Thrombosis/metabolism , c-Mer Tyrosine Kinase/metabolism , Animals , Humans , Mice , Phosphorylation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Axl Receptor Tyrosine Kinase
19.
Front Immunol ; 9: 21, 2018.
Article in English | MEDLINE | ID: mdl-29467753

ABSTRACT

The kallikrein-kinin system (KKS) consists of two serine proteases, prekallikrein (pKal) and factor XII (FXII), and a cofactor, high-molecular-weight kininogen (HK). Upon activation of the KKS, HK is cleaved to release bradykinin. Although the KKS is activated in humans and animals with inflammatory bowel disease (IBD), its role in the pathogenesis of IBD has not been characterized. In the present study, we determined the role of the KKS in the pathogenesis of IBD using mice that lack proteins involved in the KKS. In two colitis models, induced by dextran sulfate sodium (DSS) or 2,4,6-trinitrobenzene sulfonic acid (TNBS), mice deficient in HK, pKal, or bradykinin receptors displayed attenuated phenotypes, including body weight loss, disease activity index, colon length shortening, histological scoring, and colonic production of cytokines. Infiltration of neutrophils and inflammatory monocytes in the colonic lamina propria was reduced in HK-deficient mice. Reconstitution of HK-deficient mice through intravenous injection of HK recovered their susceptibility to DSS-induced colitis, increased IL-1ß levels in the colon tissue and bradykinin concentrations in plasma. In contrast to the phenotypes of other mice lacking other proteins involved in the KKS, mice lacking FXII had comparable colonic inflammation to that observed in wild-type mice. The concentration of bradykinin was significantly increased in the plasma of wild-type mice after DSS-induced colitis. In vitro analysis revealed that DSS-induced pKal activation, HK cleavage, and bradykinin plasma release were prevented by the absence of pKal or the inhibition of Kal. Unlike DSS, TNBS-induced colitis did not trigger HK cleavage. Collectively, our data strongly suggest that Kal, acting independently of FXII, contributes to experimental colitis by promoting bradykinin release from HK.


Subject(s)
Bradykinin/metabolism , Colitis/immunology , Colitis/pathology , Kallikrein-Kinin System/immunology , Kininogen, High-Molecular-Weight/metabolism , Prekallikrein/metabolism , Animals , Bradykinin/blood , Colitis/chemically induced , Dextran Sulfate , Factor XII/metabolism , Interleukin-1beta/analysis , Intestinal Mucosa/pathology , Kininogen, High-Molecular-Weight/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/genetics , Neutrophils/immunology , Plasma Kallikrein/analysis , Prekallikrein/genetics , Receptors, Bradykinin/genetics , Trinitrobenzenesulfonic Acid
20.
Front Immunol ; 8: 1188, 2017.
Article in English | MEDLINE | ID: mdl-28993777

ABSTRACT

Apoptotic cells, by externalizing phosphatidylserine (PS) as a hallmark feature, are procoagulant. However, the mechanism by which apoptotic cells activate coagulation system remains unknown. Intrinsic coagulation pathway is initiated by coagulation factor XII (FXII) of contact activation system. The purpose of this study was to determine whether FXII is involved in procoagulant activity of apoptotic cells. Using western blotting and chromogenic substrate assay, we found that incubation with apoptotic cells, but not with viable cells, resulted in rapid cleavage and activation of FXII in the presence of prekallikrein and high molecular weight kininogen (HK), other two components of contact activation system. As detected by flow cytometry, FXII bound to apoptotic cells in a concentration-dependent manner, which was inhibited by annexin V and PS liposome. Direct association of FXII with PS was confirmed in a surface plasmon resonance assay. Clotting time of FXII-deficient plasma induced by apoptotic cells was significantly prolonged, which was fully reversed by replenishment with FXII. Corn trypsin inhibitor, a FXII inhibitor, completely prevented apoptotic cells-induced intrinsic tenase complex formation. Consistently, apoptotic cells significantly increased thrombin production in normal plasma, which was not affected by an inhibitory anti-tissue factor antibody. However, blocking of PS by annexin V, inhibition of FXII, or the deficiency of FXII suppressed apoptotic cells-induced thrombin generation. Addition of purified FXII to FXII-deficient plasma recovered thrombin generation to the normal plasma level. In conclusion, FXII binds to apoptotic cells via PS and becomes activated, thereby constituting a novel mechanism mediating the procoagulant activity of apoptotic cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...