Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Nature ; 624(7990): 164-172, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057571

ABSTRACT

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Subject(s)
Aging , Biomarkers , Disease , Health , Organ Specificity , Proteome , Proteomics , Adult , Humans , Aging/blood , Alzheimer Disease/blood , Biomarkers/blood , Brain/metabolism , Cognitive Dysfunction/blood , Proteome/analysis , Machine Learning , Cohort Studies , Disease Progression , Heart Failure/blood , Extracellular Matrix/metabolism , Synapses/metabolism , Vascular Calcification/blood , Heart
2.
Stereotact Funct Neurosurg ; 101(4): 244-253, 2023.
Article in English | MEDLINE | ID: mdl-37429256

ABSTRACT

BACKGROUND: Spinal cord stimulation (SCS) has been investigated as a potential therapeutic option for managing refractory symptoms in patients with Parkinson's disease (PD). OBJECTIVE: This systematic review and meta-analysis aimed to evaluate the safety and efficacy of SCS in PD. METHOD: A comprehensive literature search was conducted on PubMed and Web of Science to identify SCS studies reporting Unified Parkinson Disease Rating Scale-III (UPDRS-III) or Visual Analogue Scale (VAS) score changes in PD cohorts with at least 3 patients and a follow-up period of at least 1 month. Treatment effect was measured as the mean change in outcome scores and analyzed using an inverse variance random-effects model. The risk of bias was assessed using the Newcastle-Ottawa Scale and funnel plots. RESULTS: A total of 11 studies comprising 76 patients were included. Nine studies involving 72 patients reported an estimated decrease of 4.43 points (95% confidence interval [CI]: 2.11; 6.75, p < 0.01) in UPDRS-III score, equivalent to a 14% reduction. The axial subscores in 48 patients decreased by 2.35 points (95% CI: 1.26; 3.45, p < 0.01, 20% reduction). The pooled effect size of five studies on back and leg pain VAS scores was calculated as 4.38 (95% CI: 2.67; 6.09, p < 0.001), equivalent to a 59% reduction. CONCLUSIONS: Our analysis suggests that SCS may provide significant motor and pain benefits for patients with PD, although the results should be interpreted with caution due to several potential limitations including study heterogeneity, open-label designs, small sample sizes, and the possibility of publication bias. Further research using larger sample sizes and placebo-/sham-controlled designs is needed to confirm effectiveness.


Subject(s)
Parkinson Disease , Spinal Cord Stimulation , Humans , Parkinson Disease/therapy , Parkinson Disease/drug therapy , Spinal Cord Stimulation/methods , Pain/etiology
4.
Stem Cell Rev Rep ; 18(8): 3050-3065, 2022 12.
Article in English | MEDLINE | ID: mdl-35809166

ABSTRACT

Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.


Subject(s)
Dura Mater , Transcriptome , Humans , Animals , Mice , Dura Mater/metabolism , Dura Mater/pathology , Cell Differentiation/genetics , Fibroblasts , Cells, Cultured
5.
Nature ; 606(7915): 785-790, 2022 06.
Article in English | MEDLINE | ID: mdl-35705806

ABSTRACT

Exercise confers protection against obesity, type 2 diabetes and other cardiometabolic diseases1-5. However, the molecular and cellular mechanisms that mediate the metabolic benefits of physical activity remain unclear6. Here we show that exercise stimulates the production of N-lactoyl-phenylalanine (Lac-Phe), a blood-borne signalling metabolite that suppresses feeding and obesity. The biosynthesis of Lac-Phe from lactate and phenylalanine occurs in CNDP2+ cells, including macrophages, monocytes and other immune and epithelial cells localized to diverse organs. In diet-induced obese mice, pharmacological-mediated increases in Lac-Phe reduces food intake without affecting movement or energy expenditure. Chronic administration of Lac-Phe decreases adiposity and body weight and improves glucose homeostasis. Conversely, genetic ablation of Lac-Phe biosynthesis in mice increases food intake and obesity following exercise training. Last, large activity-inducible increases in circulating Lac-Phe are also observed in humans and racehorses, establishing this metabolite as a molecular effector associated with physical activity across multiple activity modalities and mammalian species. These data define a conserved exercise-inducible metabolite that controls food intake and influences systemic energy balance.


Subject(s)
Eating , Feeding Behavior , Obesity , Phenylalanine , Physical Conditioning, Animal , Adiposity/drug effects , Animals , Body Weight/drug effects , Diabetes Mellitus, Type 2 , Disease Models, Animal , Eating/physiology , Energy Metabolism , Feeding Behavior/physiology , Glucose/metabolism , Lactic Acid/metabolism , Mice , Obesity/metabolism , Obesity/prevention & control , Phenylalanine/administration & dosage , Phenylalanine/analogs & derivatives , Phenylalanine/metabolism , Phenylalanine/pharmacology , Physical Conditioning, Animal/physiology
6.
Nature ; 605(7910): 509-515, 2022 05.
Article in English | MEDLINE | ID: mdl-35545674

ABSTRACT

Recent understanding of how the systemic environment shapes the brain throughout life has led to numerous intervention strategies to slow brain ageing1-3. Cerebrospinal fluid (CSF) makes up the immediate environment of brain cells, providing them with nourishing compounds4,5. We discovered that infusing young CSF directly into aged brains improves memory function. Unbiased transcriptome analysis of the hippocampus identified oligodendrocytes to be most responsive to this rejuvenated CSF environment. We further showed that young CSF boosts oligodendrocyte progenitor cell (OPC) proliferation and differentiation in the aged hippocampus and in primary OPC cultures. Using SLAMseq to metabolically label nascent mRNA, we identified serum response factor (SRF), a transcription factor that drives actin cytoskeleton rearrangement, as a mediator of OPC proliferation following exposure to young CSF. With age, SRF expression decreases in hippocampal OPCs, and the pathway is induced by acute injection with young CSF. We screened for potential SRF activators in CSF and found that fibroblast growth factor 17 (Fgf17) infusion is sufficient to induce OPC proliferation and long-term memory consolidation in aged mice while Fgf17 blockade impairs cognition in young mice. These findings demonstrate the rejuvenating power of young CSF and identify Fgf17 as a key target to restore oligodendrocyte function in the ageing brain.


Subject(s)
Aging , Brain , Cerebrospinal Fluid , Oligodendrocyte Precursor Cells , Oligodendroglia , Animals , Cell Differentiation/genetics , Cerebrospinal Fluid/physiology , Fibroblast Growth Factors/metabolism , Gene Expression Regulation , Mice , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism
7.
Proc Natl Acad Sci U S A ; 119(11): e2121609119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35259016

ABSTRACT

SignificanceNeurodegenerative diseases are poorly understood and difficult to treat. One common hallmark is lysosomal dysfunction leading to the accumulation of aggregates and other undegradable materials, which cause damage to brain resident cells. Lysosomes are acidic organelles responsible for breaking down biomolecules and recycling their constitutive parts. In this work, we find that the antiinflammatory and neuroprotective compound, discovered via a phenotypic screen, imparts its beneficial effects by targeting the lysosome and restoring its function. This is established using a genome-wide CRISPRi target identification screen and then confirmed using a variety of lysosome-targeted studies. The resulting small molecule from this study represents a potential treatment for neurodegenerative diseases as well as a research tool for the study of lysosomes in disease.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Lysosomes/drug effects , Neurodegenerative Diseases/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Biomarkers , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Disease Susceptibility , Drug Development , Gene Expression Profiling , Humans , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/pathology , Neurons/drug effects , Neurons/metabolism , Smad Proteins/agonists
8.
Nature ; 603(7903): 885-892, 2022 03.
Article in English | MEDLINE | ID: mdl-35165441

ABSTRACT

The human brain vasculature is of great medical importance: its dysfunction causes disability and death1, and the specialized structure it forms-the blood-brain barrier-impedes the treatment of nearly all brain disorders2,3. Yet so far, we have no molecular map of the human brain vasculature. Here we develop vessel isolation and nuclei extraction for sequencing (VINE-seq) to profile the major vascular and perivascular cell types of the human brain through 143,793 single-nucleus transcriptomes from 25 hippocampus and cortex samples of 9 individuals with Alzheimer's disease and 8 individuals with no cognitive impairment. We identify brain-region- and species-enriched genes and pathways. We reveal molecular principles of human arteriovenous organization, recapitulating a gradual endothelial and punctuated mural cell continuum. We discover two subtypes of human pericytes, marked by solute transport and extracellular matrix (ECM) organization; and define perivascular versus meningeal fibroblast specialization. In Alzheimer's disease, we observe selective vulnerability of ECM-maintaining pericytes and gene expression patterns that implicate dysregulated blood flow. With an expanded survey of brain cell types, we find that 30 of the top 45 genes that have been linked to Alzheimer's disease risk by genome-wide association studies (GWASs) are expressed in the human brain vasculature, and we confirm this by immunostaining. Vascular GWAS genes map to endothelial protein transport, adaptive immune and ECM pathways. Many are microglia-specific in mice, suggesting a partial evolutionary transfer of Alzheimer's disease risk. Our work uncovers the molecular basis of the human brain vasculature, which will inform our understanding of overall brain health, disease and therapy.


Subject(s)
Alzheimer Disease , Brain , Disease Susceptibility , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/blood supply , Brain/cytology , Brain/metabolism , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Genome-Wide Association Study , Hippocampus/blood supply , Hippocampus/cytology , Hippocampus/metabolism , Humans , Mice , Microglia/metabolism , Pericytes/metabolism , Transcriptome
9.
Nature ; 600(7889): 494-499, 2021 12.
Article in English | MEDLINE | ID: mdl-34880498

ABSTRACT

Physical exercise is generally beneficial to all aspects of human and animal health, slowing cognitive ageing and neurodegeneration1. The cognitive benefits of physical exercise are tied to an increased plasticity and reduced inflammation within the hippocampus2-4, yet little is known about the factors and mechanisms that mediate these effects. Here we show that 'runner plasma', collected from voluntarily running mice and infused into sedentary mice, reduces baseline neuroinflammatory gene expression and experimentally induced brain inflammation. Plasma proteomic analysis revealed a concerted increase in complement cascade inhibitors including clusterin (CLU). Intravenously injected CLU binds to brain endothelial cells and reduces neuroinflammatory gene expression in a mouse model of acute brain inflammation and a mouse model of Alzheimer's disease. Patients with cognitive impairment who participated in structured exercise for 6 months had higher plasma levels of CLU. These findings demonstrate the existence of anti-inflammatory exercise factors that are transferrable, target the cerebrovasculature and benefit the brain, and are present in humans who engage in exercise.


Subject(s)
Alzheimer Disease , Encephalitis , Alzheimer Disease/metabolism , Animals , Clusterin/genetics , Clusterin/metabolism , Endothelial Cells/metabolism , Humans , Mice , Proteomics
10.
Am J Hum Genet ; 108(12): 2336-2353, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34767756

ABSTRACT

Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.


Subject(s)
Alzheimer Disease/genetics , Biological Specimen Banks , Gene Knockout Techniques , Genes, erbB-1 , Genetic Variation , Genome-Wide Association Study , Humans , RNA-Seq , Transcriptome , Whole Genome Sequencing
11.
Science ; 374(6569): 868-874, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34648304

ABSTRACT

Recent studies indicate that the adaptive immune system plays a role in Lewy body dementia (LBD). However, the mechanism regulating T cell brain homing in LBD is unknown. Here, we observed T cells adjacent to Lewy bodies and dopaminergic neurons in postmortem LBD brains. Single-cell RNA sequencing of cerebrospinal fluid (CSF) identified up-regulated expression of C-X-C motif chemokine receptor 4 (CXCR4) in CD4+ T cells in LBD. CSF protein levels of the CXCR4 ligand, C-X-C motif chemokine ligand 12 (CXCL12), were associated with neuroaxonal damage in LBD. Furthermore, we observed clonal expansion and up-regulated interleukin 17A expression by CD4+ T cells stimulated with a phosphorylated α-synuclein epitope. Thus, CXCR4-CXCL12 signaling may represent a mechanistic target for inhibiting pathological interleukin-17­producing T cell trafficking in LBD.


Subject(s)
Brain/immunology , Brain/pathology , CD4-Positive T-Lymphocytes/immunology , Lewy Body Disease/immunology , Lewy Body Disease/pathology , Nerve Degeneration , Animals , Brain/blood supply , Brain/metabolism , CD4-Positive T-Lymphocytes/metabolism , Cerebrospinal Fluid/immunology , Chemokine CXCL12/metabolism , Female , Humans , Lewy Body Disease/cerebrospinal fluid , Lewy Body Disease/metabolism , Lymphocyte Activation , Male , Meninges/immunology , Meninges/metabolism , Mice , Mice, Inbred C57BL , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction , T-Lymphocyte Subsets/immunology , Th17 Cells/immunology , Up-Regulation , alpha-Synuclein/analysis
13.
Nature ; 595(7868): 565-571, 2021 07.
Article in English | MEDLINE | ID: mdl-34153974

ABSTRACT

Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.


Subject(s)
Astrocytes/pathology , Brain/pathology , COVID-19/diagnosis , COVID-19/pathology , Choroid Plexus/pathology , Microglia/pathology , Neurons/pathology , Aged , Aged, 80 and over , Brain/metabolism , Brain/physiopathology , Brain/virology , COVID-19/genetics , COVID-19/physiopathology , Cell Nucleus/genetics , Choroid Plexus/metabolism , Choroid Plexus/physiopathology , Choroid Plexus/virology , Female , Humans , Inflammation/virology , Male , Middle Aged , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Single-Cell Analysis , Transcriptome , Virus Replication
14.
Cancer ; 127(10): 1568-1575, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33471374

ABSTRACT

BACKGROUND: The Memorial Sloan Kettering Prognostic Score (MPS), a composite of the neutrophil-lymphocyte ratio (NLR) and albumin, is an objective prognostic tool created as a more readily available alternative to the Glasgow Prognostic Score. A prior analysis of patients with metastatic pancreatic adenocarcinoma (mPDAC) suggested that the MPS may predict survival, although it did not control for clinically relevant factors. METHODS: MPS scores were calculated for patients with mPDAC treated at Memorial Sloan Kettering Cancer Center from January 1, 2011, to December 31, 2014. An MPS scale of 0 to 2 was used: 0 for an albumin level ≥ 4 g/dL and an NLR ≤ 4 g/dL, 1 for either an albumin level < 4 g/dL or an NLR > 4 g/dL, and 2 for an albumin level < 4 g/dL and an NLR > 4 g/dL. Performance status, antineoplastic therapy, presence of thromboembolism (TE), radiation therapy, and metastatic sites were also analyzed. The associations with overall survival were examined with time-dependent Cox proportional hazards regression analyses. RESULTS: A multivariate model revealed that higher MPS scores at diagnosis (hazard ratio for MPS of 2 vs MPS of 0, 1.41; 95% confidence interval, 1.13-1.76), liver metastases, radiation therapy, hospital admissions, TE, and performance status were associated with worse overall survival. The median overall survival for patients with MPS scores of 0, 1, and 2 were 12.9, 9.0, and 5.4 months, respectively. CONCLUSIONS: The MPS, an easily calculated composite of the NLR and albumin, is an objective tool that may predict survival in mPDAC independently of performance status, disease characteristics, and cancer therapy. LAY SUMMARY: The Memorial Sloan Kettering Prognostic Score (MPS) is a new scoring system that incorporates markers of inflammation found in individuals' blood at the diagnosis of metastatic pancreatic cancer. Data suggest that the MPS may help to determine prognosis.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Adenocarcinoma/blood , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Humans , Lymphocytes , Neutrophils , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Prognosis , Serum Albumin
15.
Nat Chem Biol ; 17(3): 326-334, 2021 03.
Article in English | MEDLINE | ID: mdl-33199915

ABSTRACT

Secreted polypeptides are a fundamental axis of intercellular and endocrine communication. However, a global understanding of the composition and dynamics of cellular secretomes in intact mammalian organisms has been lacking. Here, we introduce a proximity biotinylation strategy that enables labeling, detection and enrichment of secreted polypeptides in a cell type-selective manner in mice. We generate a proteomic atlas of hepatocyte, myocyte, pericyte and myeloid cell secretomes by direct purification of biotinylated secreted proteins from blood plasma. Our secretome dataset validates known cell type-protein pairs, reveals secreted polypeptides that distinguish between cell types and identifies new cellular sources for classical plasma proteins. Lastly, we uncover a dynamic and previously undescribed nutrient-dependent reprogramming of the hepatocyte secretome characterized by the increased unconventional secretion of the cytosolic enzyme betaine-homocysteine S-methyltransferase (BHMT). This secretome profiling strategy enables dynamic and cell type-specific dissection of the plasma proteome and the secreted polypeptides that mediate intercellular signaling.


Subject(s)
Betaine-Homocysteine S-Methyltransferase/genetics , Biotin/chemistry , Blood Proteins/genetics , Hepatocytes/metabolism , Proteome/genetics , Staining and Labeling/methods , Animals , Betaine-Homocysteine S-Methyltransferase/metabolism , Biotin/administration & dosage , Biotinylation , Blood Proteins/metabolism , Gene Expression , HEK293 Cells , Hepatocytes/cytology , Humans , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Muscle Cells/cytology , Muscle Cells/metabolism , Myeloid Cells/cytology , Myeloid Cells/metabolism , Organ Specificity , Pericytes/cytology , Pericytes/metabolism , Proteome/metabolism , Proteomics/methods
16.
Nature ; 583(7816): 425-430, 2020 07.
Article in English | MEDLINE | ID: mdl-32612231

ABSTRACT

The vascular interface of the brain, known as the blood-brain barrier (BBB), is understood to maintain brain function in part via its low transcellular permeability1-3. Yet, recent studies have demonstrated that brain ageing is sensitive to circulatory proteins4,5. Thus, it is unclear whether permeability to individually injected exogenous tracers-as is standard in BBB studies-fully represents blood-to-brain transport. Here we label hundreds of proteins constituting the mouse blood plasma proteome, and upon their systemic administration, study the BBB with its physiological ligand. We find that plasma proteins readily permeate the healthy brain parenchyma, with transport maintained by BBB-specific transcriptional programmes. Unlike IgG antibody, plasma protein uptake diminishes in the aged brain, driven by an age-related shift in transport from ligand-specific receptor-mediated to non-specific caveolar transcytosis. This age-related shift occurs alongside a specific loss of pericyte coverage. Pharmacological inhibition of the age-upregulated phosphatase ALPL, a predicted negative regulator of transport, enhances brain uptake of therapeutically relevant transferrin, transferrin receptor antibody and plasma. These findings reveal the extent of physiological protein transcytosis to the healthy brain, a mechanism of widespread BBB dysfunction with age and a strategy for enhanced drug delivery.


Subject(s)
Aging/metabolism , Aging/pathology , Blood-Brain Barrier/metabolism , Transcytosis , Alkaline Phosphatase/metabolism , Animals , Antibodies/metabolism , Biological Transport , Blood Proteins/administration & dosage , Blood Proteins/metabolism , Blood Proteins/pharmacokinetics , Brain/blood supply , Brain/metabolism , Drug Delivery Systems , Health , Humans , Male , Mice , Mice, Inbred C57BL , Plasma/metabolism , Proteome/administration & dosage , Proteome/metabolism , Proteome/pharmacokinetics , Receptors, Transferrin/immunology , Transcription, Genetic , Transferrin/metabolism
17.
Cell Rep ; 30(13): 4418-4432.e4, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32234477

ABSTRACT

Brain endothelial cells (BECs) are key constituents of the blood-brain barrier (BBB), protecting the brain from pathogens and restricting access of circulatory factors. Yet, because circulatory proteins have prominent age-related effects on adult neurogenesis, neuroinflammation, and cognitive function in mice, we wondered whether BECs receive and potentially relay signals between the blood and brain. Using single-cell RNA sequencing of hippocampal BECs, we discover that capillary BECs-compared with arterial and venous BECs-undergo the greatest transcriptional changes in normal aging, upregulating innate immunity and oxidative stress response pathways. Short-term infusions of aged plasma into young mice recapitulate key aspects of this aging transcriptome, and remarkably, infusions of young plasma into aged mice exert rejuvenation effects on the capillary transcriptome. Together, these findings suggest that the transcriptional age of BECs is exquisitely sensitive to age-related circulatory cues and pinpoint the BBB itself as a promising therapeutic target to treat brain disease.


Subject(s)
Aging/physiology , Blood Circulation/physiology , Brain/cytology , Endothelial Cells/metabolism , Aging/blood , Aging/genetics , Animals , Arteries/physiology , Capillaries/physiology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL , Transcription, Genetic/drug effects , Transcriptome/genetics , Veins/physiology
18.
Nature ; 577(7790): 399-404, 2020 01.
Article in English | MEDLINE | ID: mdl-31915375

ABSTRACT

Alzheimer's disease is an incurable neurodegenerative disorder in which neuroinflammation has a critical function1. However, little is known about the contribution of the adaptive immune response in Alzheimer's disease2. Here, using integrated analyses of multiple cohorts, we identify peripheral and central adaptive immune changes in Alzheimer's disease. First, we performed mass cytometry of peripheral blood mononuclear cells and discovered an immune signature of Alzheimer's disease that consists of increased numbers of CD8+ T effector memory CD45RA+ (TEMRA) cells. In a second cohort, we found that CD8+ TEMRA cells were negatively associated with cognition. Furthermore, single-cell RNA sequencing revealed that T cell receptor (TCR) signalling was enhanced in these cells. Notably, by using several strategies of single-cell TCR sequencing in a third cohort, we discovered clonally expanded CD8+ TEMRA cells in the cerebrospinal fluid of patients with Alzheimer's disease. Finally, we used machine learning, cloning and peptide screens to demonstrate the specificity of clonally expanded TCRs in the cerebrospinal fluid of patients with Alzheimer's disease to two separate Epstein-Barr virus antigens. These results reveal an adaptive immune response in the blood and cerebrospinal fluid in Alzheimer's disease and provide evidence of clonal, antigen-experienced T cells patrolling the intrathecal space of brains affected by age-related neurodegeneration.


Subject(s)
Alzheimer Disease/immunology , CD8-Positive T-Lymphocytes/immunology , Cerebrospinal Fluid/immunology , Aged , Amino Acid Sequence , Cohort Studies , Humans , Immunologic Memory , Middle Aged , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Sequence Analysis, Protein
19.
Cell ; 179(2): 459-469.e9, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585083

ABSTRACT

The rapid emergence of antibiotic-resistant infections is prompting increased interest in phage-based antimicrobials. However, acquisition of resistance by bacteria is a major issue in the successful development of phage therapies. Through natural evolution and structural modeling, we identified host-range-determining regions (HRDRs) in the T3 phage tail fiber protein and developed a high-throughput strategy to genetically engineer these regions through site-directed mutagenesis. Inspired by antibody specificity engineering, this approach generates deep functional diversity while minimizing disruptions to the overall tail fiber structure, resulting in synthetic "phagebodies." We showed that mutating HRDRs yields phagebodies with altered host-ranges, and select phagebodies enable long-term suppression of bacterial growth in vitro, by preventing resistance appearance, and are functional in vivo using a murine model. We anticipate that this approach may facilitate the creation of next-generation antimicrobials that slow resistance development and could be extended to other viral scaffolds for a broad range of applications.


Subject(s)
Bacteriophage T3/genetics , Escherichia coli Infections/therapy , Escherichia coli/virology , Phage Therapy/methods , Skin Diseases, Bacterial/therapy , Viral Tail Proteins/genetics , Animals , Drug Resistance, Bacterial , Host Specificity , Mice , Mutagenesis, Site-Directed
20.
Nat Med ; 25(6): 988-1000, 2019 06.
Article in English | MEDLINE | ID: mdl-31086348

ABSTRACT

An aged circulatory environment can activate microglia, reduce neural precursor cell activity and impair cognition in mice. We hypothesized that brain endothelial cells (BECs) mediate at least some of these effects. We observe that BECs in the aged mouse hippocampus express an inflammatory transcriptional profile with focal upregulation of vascular cell adhesion molecule 1 (VCAM1), a protein that facilitates vascular-immune cell interactions. Concomitantly, levels of the shed, soluble form of VCAM1 are prominently increased in the plasma of aged humans and mice, and their plasma is sufficient to increase VCAM1 expression in cultured BECs and the hippocampi of young mice. Systemic administration of anti-VCAM1 antibody or genetic ablation of Vcam1 in BECs counteracts the detrimental effects of plasma from aged individuals on young brains and reverses aging aspects, including microglial reactivity and cognitive deficits, in the brains of aged mice. Together, these findings establish brain endothelial VCAM1 at the blood-brain barrier as a possible target to treat age-related neurodegeneration.


Subject(s)
Aging/blood , Brain/metabolism , Neural Stem Cells/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Adolescent , Adult , Aged , Aging/immunology , Aging/metabolism , Animals , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Brain/cytology , Cells, Cultured , Endothelial Cells/metabolism , Female , Gene Deletion , Hippocampus/cytology , Hippocampus/metabolism , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Microglia/metabolism , Neural Stem Cells/cytology , Vascular Cell Adhesion Molecule-1/blood , Vascular Cell Adhesion Molecule-1/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...