Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Psychol Med ; 54(2): 359-373, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37376848

ABSTRACT

BACKGROUND: Childhood is a crucial neurodevelopmental period. We investigated whether childhood reading for pleasure (RfP) was related to young adolescent assessments of cognition, mental health, and brain structure. METHODS: We conducted a cross-sectional and longitudinal study in a large-scale US national cohort (10 000 + young adolescents), using the well-established linear mixed model and structural equation methods for twin study, longitudinal and mediation analyses. A 2-sample Mendelian randomization (MR) analysis for potential causal inference was also performed. Important factors including socio-economic status were controlled. RESULTS: Early-initiated long-standing childhood RfP (early RfP) was highly positively correlated with performance on cognitive tests and significantly negatively correlated with mental health problem scores of young adolescents. These participants with higher early RfP scores exhibited moderately larger total brain cortical areas and volumes, with increased regions including the temporal, frontal, insula, supramarginal; left angular, para-hippocampal; right middle-occipital, anterior-cingulate, orbital areas; and subcortical ventral-diencephalon and thalamus. These brain structures were significantly related to their cognitive and mental health scores, and displayed significant mediation effects. Early RfP was longitudinally associated with higher crystallized cognition and lower attention symptoms at follow-up. Approximately 12 h/week of youth regular RfP was cognitively optimal. We further observed a moderately significant heritability of early RfP, with considerable contribution from environments. MR analysis revealed beneficial causal associations of early RfP with adult cognitive performance and left superior temporal structure. CONCLUSIONS: These findings, for the first time, revealed the important relationships of early RfP with subsequent brain and cognitive development and mental well-being.


Subject(s)
Mental Health , Pleasure , Adult , Adolescent , Humans , Child , Longitudinal Studies , Cross-Sectional Studies , Reading , Magnetic Resonance Imaging , Brain/diagnostic imaging , Cognition
2.
PLoS Genet ; 19(12): e1011112, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150468

ABSTRACT

Mendelian randomization (MR) is an effective approach for revealing causal risk factors that underpin complex traits and diseases. While MR has been more widely applied under two-sample settings, it is more promising to be used in one single large cohort given the rise of biobank-scale datasets that simultaneously contain genotype data, brain imaging data, and matched complex traits from the same individual. However, most existing multivariable MR methods have been developed for two-sample setting or a small number of exposures. In this study, we introduce a one-sample multivariable MR method based on partial least squares and Lasso regression (MR-PL). MR-PL is capable of considering the correlation among exposures (e.g., brain imaging features) when the number of exposures is extremely upscaled, while also correcting for winner's curse bias. We performed extensive and systematic simulations, and demonstrated the robustness and reliability of our method. Comprehensive simulations confirmed that MR-PL can generate more precise causal estimates with lower false positive rates than alternative approaches. Finally, we applied MR-PL to the datasets from UK Biobank to reveal the causal effects of 36 white matter tracts on 180 complex traits, and showed putative white matter tracts that are implicated in smoking, blood vascular function-related traits, and eating behaviors.


Subject(s)
Biological Specimen Banks , Mendelian Randomization Analysis , Humans , Mendelian Randomization Analysis/methods , Multifactorial Inheritance , Reproducibility of Results , Neuroimaging , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide
3.
Genome Med ; 15(1): 56, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488639

ABSTRACT

BACKGROUND: Prioritizing genes that underlie complex brain disorders poses a considerable challenge. Despite previous studies have found that they shared symptoms and heterogeneity, it remained difficult to systematically identify the risk genes associated with them. METHODS: By using the CAGE (Cap Analysis of Gene Expression) read alignment files for 439 human cell and tissue types (including primary cells, tissues and cell lines) from FANTOM5 project, we predicted enhancer-promoter interactions (EPIs) of 439 cell and tissue types in human, and examined their reliability. Then we evaluated the genetic heritability of 17 diverse brain disorders and behavioral-cognitive phenotypes in each neural cell type, brain region, and developmental stage. Furthermore, we prioritized genes associated with brain disorders and phenotypes by leveraging the EPIs in each neural cell and tissue type, and analyzed their pleiotropy and functionality for different categories of disorders and phenotypes. Finally, we characterized the spatiotemporal expression dynamics of these associated genes in cells and tissues. RESULTS: We found that identified EPIs showed activity specificity and network aggregation in cell and tissue types, and enriched TF binding in neural cells played key roles in synaptic plasticity and nerve cell development, i.e., EGR1 and SOX family. We also discovered that most neurological disorders exhibit heritability enrichment in neural stem cells and astrocytes, while psychiatric disorders and behavioral-cognitive phenotypes exhibit enrichment in neurons. Furthermore, our identified genes recapitulated well-known risk genes, which exhibited widespread pleiotropy between psychiatric disorders and behavioral-cognitive phenotypes (i.e., FOXP2), and indicated expression specificity in neural cell types, brain regions, and developmental stages associated with disorders and phenotypes. Importantly, we showed the potential associations of brain disorders with brain regions and developmental stages that have not been well studied. CONCLUSIONS: Overall, our study characterized the gene-enhancer regulatory networks and genetic mechanisms in the human neural cells and tissues, and illustrated the value of reanalysis of publicly available genomic datasets.


Subject(s)
Brain Diseases , Humans , Reproducibility of Results , Promoter Regions, Genetic , Neurons , Gene Regulatory Networks
4.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36847697

ABSTRACT

Brain imaging genomics is an emerging interdisciplinary field, where integrated analysis of multimodal medical image-derived phenotypes (IDPs) and multi-omics data, bridging the gap between macroscopic brain phenotypes and their cellular and molecular characteristics. This approach aims to better interpret the genetic architecture and molecular mechanisms associated with brain structure, function and clinical outcomes. More recently, the availability of large-scale imaging and multi-omics datasets from the human brain has afforded the opportunity to the discovering of common genetic variants contributing to the structural and functional IDPs of the human brain. By integrative analyses with functional multi-omics data from the human brain, a set of critical genes, functional genomic regions and neuronal cell types have been identified as significantly associated with brain IDPs. Here, we review the recent advances in the methods and applications of multi-omics integration in brain imaging analysis. We highlight the importance of functional genomic datasets in understanding the biological functions of the identified genes and cell types that are associated with brain IDPs. Moreover, we summarize well-known neuroimaging genetics datasets and discuss challenges and future directions in this field.


Subject(s)
Brain , Genomics , Humans , Genomics/methods , Brain/diagnostic imaging , Brain/metabolism , Phenotype , Neuroimaging/methods
5.
EBioMedicine ; 80: 104039, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35509143

ABSTRACT

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) has been reported to be associated with longer screen time utilization (STU) at the behavioral level. However, whether there are shared neural links between ADHD symptoms and prolonged STU is not clear and has not been explored in a single large-scale dataset. METHODS: Leveraging the genetics, neuroimaging and behavioral data of 11,000+ children aged 9-11 from the Adolescent Brain Cognitive Development cohort, this study investigates the associations between the polygenic risk and trait for ADHD, STU, and white matter microstructure through cross-sectionally and longitudinal analyses. FINDINGS: Children with higher polygenic risk scores for ADHD tend to have longer STU and more severe ADHD symptoms. Fractional anisotropy (FA) values in several white matter tracts are negatively correlated with both the ADHD polygenic risk score and STU, including the inferior frontal-striatal tract, inferior frontal-occipital fasciculus, superior longitudinal fasciculus and corpus callosum. Most of these tracts are linked to visual-related functions. Longitudinal analyses indicate a directional effect of white matter microstructure on the ADHD scale, and a bi-directional effect between the ADHD scale and STU. Furthermore, reduction of FA in several white matter tracts mediates the association between the ADHD polygenic risk score and STU. INTERPRETATION: These findings shed new light on the shared neural overlaps between ADHD symptoms and prolonged STU, and provide evidence that the polygenic risk for ADHD is related, via white matter microstructure and the ADHD trait, to STU. FUNDING: This study was mainly supported by NSFC and National Key R&D Program of China.


Subject(s)
Attention Deficit Disorder with Hyperactivity , White Matter , Adolescent , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Attention Deficit Disorder with Hyperactivity/genetics , Brain/diagnostic imaging , Child , Corpus Callosum , Humans , Screen Time , White Matter/diagnostic imaging
6.
Mol Psychiatry ; 27(6): 2720-2730, 2022 06.
Article in English | MEDLINE | ID: mdl-35379909

ABSTRACT

Neurological and psychiatric disorders have overlapped phenotypic profiles, but the underlying tissue-specific functional processes remain largely unknown. In this study, we explore the shared tissue-specificity among 14 neuropsychiatric disorders through the disrupted long-range gene regulations by GWAS-identified regulatory SNPs. Through Hi-C interactions, averagely 38.0% and 17.2% of the intergenic regulatory SNPs can be linked to target protein-coding genes in brain and non-brain tissues, respectively. Interestingly, while the regulatory target genes in the brain tend to enrich in nervous system development related processes, those in the non-brain tissues are inclined to interfere with synapse and neuroinflammation related processes. Compared to psychiatric disorders, neurological disorders present more prominently the neuroinflammatory processes in both brain and non-brain tissues, indicating an intrinsic difference in mechanisms. Through tissue-specific gene regulatory networks, we then constructed disorder similarity networks in two brain and three non-brain tissues, highlighting both known disorder clusters (e.g. the neurodevelopmental disorders) and unexpected disorder clusters (e.g. Parkinson's disease is consistently grouped with psychiatric disorders). We showcase the potential pharmaceutical applications of the small bowel and its disorder clusters, illustrated by the known drug targets NR1I3 and NFACT1, and their small bowel-specific regulatory modules. In conclusion, disrupted long-range gene regulations in both brain and non-brain tissues contribute to the similarity among distinct clusters of neuropsychiatric disorders, and the tissue-specifically shared functions and regulators for disease clusters may provide insights for future therapeutic investigations.


Subject(s)
Gene Regulatory Networks , Neurodevelopmental Disorders , Brain , Gene Expression Regulation , Gene Regulatory Networks/genetics , Humans , Neurodevelopmental Disorders/genetics , Polymorphism, Single Nucleotide
7.
Brief Bioinform ; 22(4)2021 07 20.
Article in English | MEDLINE | ID: mdl-33230537

ABSTRACT

MOTIVATION: Annotating genetic variants from summary statistics of genome-wide association studies (GWAS) is crucial for predicting risk genes of various disorders. The multimarker analysis of genomic annotation (MAGMA) is one of the most popular tools for this purpose, where MAGMA aggregates signals of single nucleotide polymorphisms (SNPs) to their nearby genes. In biology, SNPs may also affect genes that are far away in the genome, thus missed by MAGMA. Although different upgrades of MAGMA have been proposed to extend gene-wise variant annotations with more information (e.g. Hi-C or eQTL), the regulatory relationships among genes and the tissue specificity of signals have not been taken into account. RESULTS: We propose a new approach, namely network-enhanced MAGMA (nMAGMA), for gene-wise annotation of variants from GWAS summary statistics. Compared with MAGMA and H-MAGMA, nMAGMA significantly extends the lists of genes that can be annotated to SNPs by integrating local signals, long-range regulation signals (i.e. interactions between distal DNA elements), and tissue-specific gene networks. When applied to schizophrenia (SCZ), nMAGMA is able to detect more risk genes (217% more than MAGMA and 57% more than H-MAGMA) that are involved in SCZ compared with MAGMA and H-MAGMA, and more of nMAGMA results can be validated with known SCZ risk genes. Some disease-related functions (e.g. the ATPase pathway in Cortex) are also uncovered in nMAGMA but not in MAGMA or H-MAGMA. Moreover, nMAGMA provides tissue-specific risk signals, which are useful for understanding disorders with multitissue origins.


Subject(s)
Gene Regulatory Networks , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Schizophrenia/genetics , Software , Female , Genome-Wide Association Study , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...