Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(7): 208, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767676

ABSTRACT

Chlorinated organic compounds (COCs) are typical refractory organic compounds, having high biological toxicity. These compounds are a type of pervasive pollutants that can be present in polluted soil, air, and various types of waterways, such as groundwater, rivers, and lakes, posing a significant threat to the ecological environment and human health. Bioelectrochemical systems (BESs) are an effective strategy for the degradation of bio-refractory compounds. BESs improve the waste treatment efficiency through the application of weak electrical stimulation. This review discusses the processes of BESs configurations and degradation performances in different environmental media including wastewater, soil, waste gas and groundwater. In addition, the degradation mechanisms and performance-enhancing additives are summarized. The future challenges and perspectives on the development of BES for COCs removal are briefly discussed.


Subject(s)
Biodegradation, Environmental , Electrochemical Techniques , Wastewater/chemistry , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Groundwater/chemistry , Organic Chemicals/metabolism
2.
Front Chem ; 12: 1374898, 2024.
Article in English | MEDLINE | ID: mdl-38516611

ABSTRACT

It is of great significance to develop a simple and rapid electrochemical sensor for simultaneous determination of heavy metal ions (HMIs) in Baijiu by using new nanomaterials. Here, graphene (GR) was utilized to combine with covalent organic frameworks (COFs) that was synthesized via the aldehyde-amine condensation between 2, 5-dimethoxyterephthalaldehyde (DMTP) and 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) to prepare a new GR/COFDPTB/GCE sensor for electrochemical sensing multiple HMIs. Compared with the glass carbon electrode (GCE), GR/GCE and COFDPTB/GCE, the developed sensor exhibited excellent electrochemical analysis ability for the simultaneous detection of Cd2+, Pb2+, and Cu2+ owing to the synergistically increased the specific surface area, the periodic porous network and plenty of effective binding sites, as well as the enhanced conductivity. Under the optimized experimental parameters, the proposed sensor showed good linearity range of 0.1-25 µM for Cd2+, and both 0.1-11 µM for Pb2+ and Cu2+ with the detection limits of Cd2+, Pb2+, and Cu2+ being 0.011 µM, 8.747 nM, and 6.373 nM, respectively. Besides, the designed sensor was successfully applied to the simultaneous detection of the three HMIs in Baijiu samples, suggesting its good practical application performance and a new method for the rapid detection of HMIs being expended.

3.
Environ Technol ; 45(10): 1908-1918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36484541

ABSTRACT

Wastewater with residual streptomycin sulphate usually contains high content of ammonia-nitrogen. However, the biological removal process of ammonia-nitrogen under streptomycin sulphate circumstance was unclear. In this study, short-term and long-term effects of streptomycin sulphate on biological nitrification systems, including AOB, NOB, SAOR, SNOR and SNPR, were evaluated comprehensively. The results indicated IC50 for AOB and NOB were 7.5 and 6.6 mg/L. SAOR and SNPR could be decreased to 3.43 ± 0.52 mg N/(g MLSS·h) and 0.24 ± 0.03 mg N/(g MLSS·h) while the addition of streptomycin sulphate was 10 mg/L. When streptomycin sulphate addition was stopped, nitrification ability recovered slightly, SAOR and SNPR increased to 9.37 ± 0.36 mg N/(g MLSS·h) and 1.66 ± 0.49 mg N/(g MLSS·h), respectively. The protein of EPS increased gradually during the acclimatization process, and the maximal protein value was 68.24 mg/g MLSS on the 100th day, however, no significant change of polysaccharose was observed during the acclimatization process. High abundance of ARGs and intI1 was detected in effluent and sludge of the biological treatment system. The maximal relative abundance of aadA1 in the sludge appeared on the 140th day, and increased by 0.99 orders of magnitude. Biological diversity decreased significantly during the acclimatization process, relative abundance of nitrosomonas was changed from 9.07% to 38.68% on the 61st day, while relative abundance of nitrobacter was changed from 1.30% to 0.64%. It should be noted that relative abundances of nitrosomonas and nitrobacter were reduced to 16.17% and 0.25% on the 140th day. This study would be helpful for nitrogen removal in wastewater with antibiotic.


Subject(s)
Microbiota , Sewage , Wastewater , Anti-Bacterial Agents , Streptomycin/pharmacology , Streptomycin/metabolism , Nitrification , Ammonia/metabolism , Nitrites/metabolism , Bioreactors , Drug Resistance, Microbial , Nitrobacter/metabolism , Nitrogen/metabolism , Oxidation-Reduction
4.
Bioresour Technol ; 390: 129881, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852508

ABSTRACT

The microbial electrolysis cell coupled with the biotrickling filters (MEC-BTF) was developed for enhancing the biodegradation of gaseous m-dichlorobenzene (m-DCB) through weak electrical stimulation. The maximum removal efficiency and elimination capacity in MEC-BTF were 1.48 and 1.65 times higher than those in open-circuit BTF (OC-BTF), respectively. Weak electrical stimulation had a positive impact on the characteristics of the biofilm. Additionally, microbial community analysis revealed that weak electrical stimulation increased the abundance of key functional genera (e.g., Rhodanobacter and Bacillus) and genes (e.g., catA/E and E1.3.1.32), thereby accelerating reductive dechlorination and ring-opening of m-DCB. Macrogenomic sequencing further revealed that electron transfer pathway in MEC-BTF might be mediated through extracellular electroactive mediators and cytochromes.


Subject(s)
Air Pollutants , Bacillus , Microbiota , Bioreactors , Filtration , Bacillus/metabolism , Biodegradation, Environmental , Air Pollutants/analysis
5.
Sci Total Environ ; 905: 167044, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709086

ABSTRACT

The ingestion of clams (Meretrix) with microplastics (MP) contamination could pose potential risk to human health. The characteristics and potential risks of MP identified in wild-clam and farm-clam from South Yellow Sea Mudflat were studied comprehensively in this paper. The results indicated that MP were identified in both wild-clam (3.4-21.3 items/individual, 2.11-10.65 items/g) and farm-clam (1.3-20.8 items/individual, 0.62-8.67 items/g) among 21 sampling sites along South Yellow Sea Mudflat. The MP abundance of clams from marine estuarine or coast ports were significantly higher than those from purely marine coast mudflat, implying that environmental habitats played an important role on MP characteristics. MP abundance were significantly and positively related to shell length, shell height, shell width and soft tissue wet weight by Pearson test, suggesting the bigger the shell, there existed more MP abundance. Among MP in wild-clams and farm-clams, fragment, fiber were most abundant MP shapes, most MP's sizes were lower than 0.25 mm, the predominant colors were black, red, blue and transparent, chlorinated polyethylene (CPE) was the major polymer. Additionally, estimated dietary intake (EDI) of MP for adults via consumption of wild-clam and farm-clam were 1123.33 ± 399.97 and 795.07 ± 326.72 items/kg/year, respectively, suggesting EDI values of wild-clams were higher than those of farm-clams, and MP intake via wild-clam consumption were more than that via farm-clam consumption. The polymer risk indexes (PRI) of MP in total tissue and digestive system for wild-clam were 1297.8 ± 92.15 (hazard level: IV ~ V), 1038 ± 69.55 (IV ~ V), respectively, while PRI of MP in total tissue and digestive system for farm-clam were 979.92 ± 75.45 (III ~ IV), 735 ± 47.78 (III ~ IV), respectively, implying that PRI and hazard level of MP from wild-clam were higher than those from farm-clam, and the potential risks would decrease greatly when digestive systems of clams are removed during ingestion.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Humans , Microplastics , Plastics , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
6.
Front Chem ; 11: 1187762, 2023.
Article in English | MEDLINE | ID: mdl-37288077

ABSTRACT

Cu1In2Zr4-O-C catalysts with Cu2In alloy structure were prepared by using the sol-gel method. Cu1In2Zr4-O-PC and Cu1In2Zr4-O-CP catalysts were obtained from plasma-modified Cu1In2Zr4-O-C before and after calcination, respectively. Under the conditions of reaction temperature 270°C, reaction pressure 2 MPa, CO2/H2 = 1/3, and GHSV = 12,000 mL/(g h), Cu1In2Zr4-O-PC catalyst has a high CO2 conversion of 13.3%, methanol selectivity of 74.3%, and CH3OH space-time yield of 3.26 mmol/gcat/h. The characterization results of X-ray diffraction (XRD), scanning electron microscopy (SEM), and temperature-programmed reduction chemisorption (H2-TPR) showed that the plasma-modified catalyst had a low crystallinity, small particle size, good dispersion, and excellent reduction performance, leading to a better activity and selectivity. Through plasma modification, the strong interaction between Cu and In in Cu1In2Zr4-O-CP catalyst, the shift of Cu 2p orbital binding energy to a lower position, and the decrease in reduction temperature all indicate that the reduction ability of Cu1In2Zr4-O-CP catalyst is enhanced, and the CO2 hydrogenation activity is improved.

7.
Anal Methods ; 15(21): 2622-2630, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37194496

ABSTRACT

This study developed an electrochemical sensor for the determination of Mn2+ in Chinese liquor by modifying a glass carbon electrode with TiO2-NH2@COFDPTB, which was synthesized via the controllable growth of COFDPTB onto the surface of TiO2-NH2 using the Schiff-base condensation reaction between 2,5-dimethoxyterephthalaldehyde and 1,3,5-tris(4-aminophenyl)benzene. The morphological and structural characterization studies of the proposed TiO2-NH2@COFDPTB were carried out by SEM, TEM, HRTEM, EDX, BET, XRD and FTIR techniques. Owing to the excellent properties and the synergism between TiO2 and COFDPTB, the introduction of TiO2-NH2@COFDPTB improved the electrochemical response significantly. By optimizing the experimental parameters, the sensor exhibited good linearity in the range of 0.1-1.0 nM and 0.08-10 µM with a detection limit of 2.83 × 10-11 M and 9.50 × 10-9 M, respectively, showing competitive performance for Mn2+ determination. Besides, the proposed sensor was successfully applied to Mn2+ detection in liquor samples, suggesting its practical application performance.

8.
Chemosphere ; 324: 138328, 2023 May.
Article in English | MEDLINE | ID: mdl-36889477

ABSTRACT

Disgusting fishy odor could break out inside oligotrophic drinking waterbody in winter with low temperature. Nevertheless, fishy odor-producing algae and corresponding fishy odorants were not very clear, odor contribution of fishy odorant and odor-producing algae to overall odor profile were also not well understood. In this study, the fishy odorants, produced by four algae separated from Yanlong Lake, were identified simultaneously. Odor contribution of identified odorant, separated algae to overall fishy odor profile were both evaluated. The results indicated Yanlong Lake was mainly associated with fishy odor (flavor profile analysis (FPA) intensity: 6), eight, five, five and six fishy odorants were identified and determined in Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, which were separated and cultured from water source. Totally sixteen odorants with concentration range of 90-880 ng/L, including hexanal, heptanal, 2,4-heptadienal, 1-octen-3-one, 1-octen-3-ol, octanal, 2-octenal, 2,4-octadienal, nonanal, 2-nonenal, 2,6-nonadienal, decanal, 2-decenal, 2,4-decadienal, undecanal, 2-tetradecanone, were verified in separated algae and associated with fishy odor. Although more odorants' odor activity value (OAV) were lower than one, approximately 89%, 91%, 87%, 90% of fishy odor intensities could be explained by reconstituting identified odorants for Cryptomonas ovate, Dinobryon sp., Synura uvella, Ochromonas sp., respectively, suggesting synergistic effect could exist among identified odorants. By calculating and evaluating total odorant production, total odorant OAV and cell odorant yield of separated algae, odor contribution rank to overall fishy odor should be Cryptomonas ovate (28.19%), Dinobryon sp. (27.05%), Synura uvella (24.27%), Ochromonas sp. (20.49%). This is the first study for identifying fishy odorants from four actually separated odor-producing algae simultaneously, this is also for the first time evaluating and explaining odor contribution of identified odorant, separated algae to overall odor profile comprehensively, this study will supply more understanding for controlling and managing fishy odor in drinking water treatment plant.


Subject(s)
Chrysophyta , Drinking Water , Odorants/analysis , Drinking Water/analysis , Temperature , Cold Temperature
9.
Chemosphere ; 312(Pt 1): 137013, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36397302

ABSTRACT

Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.


Subject(s)
Denitrification , Nitrogen , Nitrogen/chemistry , Waste Disposal, Fluid , Bioreactors , Oxygen , Hydrodynamics , Rivers , Ecosystem , Nitrification , Biofilms , Water , Wastewater
10.
Biosensors (Basel) ; 12(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36551065

ABSTRACT

Heavy metal ions (HMIs) pose a serious threat to the environment and human body because they are toxic and non-biodegradable and widely exist in environmental ecosystems. It is necessary to develop a rapid, sensitive and convenient method for HMIs detection to provide a strong guarantee for ecology and human health. Ion-imprinted electrochemical sensors (IIECSs) based on nanomaterials have been regarded as an excellent technology because of the good selectivity, the advantages of fast detection speed, low cost, and portability. Electrode surfaces modified with nanomaterials can obtain excellent nano-effects, such as size effect, macroscopic quantum tunneling effect and surface effect, which greatly improve its surface area and conductivity, so as to improve the detection sensitivity and reduce the detection limit of the sensor. Hence, the present review focused on the fundamentals and the synthetic strategies of ion-imprinted polymers (IIPs) and IIECSs for HMIs detection, as well as the applications of various nanomaterials as modifiers and sensitizers in the construction of HMIIECSs and the influence on the sensing performance of the fabricated sensors. Finally, the potential challenges and outlook on the future development of the HMIIECSs technology were also highlighted. By means of the points presented in this review, we hope to provide some help in further developing the preparation methods of high-performance HMIIECSs and expanding their potential applications.


Subject(s)
Metals, Heavy , Nanostructures , Humans , Ecosystem , Polymers , Ions
11.
J Environ Manage ; 320: 115951, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36056502

ABSTRACT

In this study, the effect of rhamnolipids (RL) on m-dichlorobenzene (m-DCB) removal and biofilm was investigated in two biotrickling filters (BTF) (BTF1: blank control; BTF2: RL addition). The critical micelle concentration (CMC) value of RL was 75.6 mg L-1, and the RL could significantly improve the solubilization of m-DCB. The results showed that the optimal concentration of RL was 180 mg L-1. The removal efficiency (RE) of m-DCB dropped by 42.4% for BTF1 no fed with RL and only 28.2% for BTF2 fed with RL when the inlet concentration increased from 200 to 1400 mg m-3 at an empty bed time (EBRT) of 60 s. RL increased the secretion of extracellular polymers (EPS) and the ratio of Protein/Polysaccharide, which improved the mass transfer of m-DCB to the biofilm. RL also had a facilitating effect on catechol-1,2-dioxygenase (C12O) enzyme activity. Furthermore, RL increased Zeta potential and facilitated microorganisms to form biofilm. The dominant microorganisms of microbial community were increased and the application of RL promoted the enrichment of them.


Subject(s)
Air Pollutants , Filtration , Air Pollutants/analysis , Biodegradation, Environmental , Bioreactors , Chlorobenzenes , Filtration/methods , Glycolipids
12.
Chemosphere ; 307(Pt 4): 135965, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35963380

ABSTRACT

Microbial biofilms are common on abiotic and biotic surfaces, especially in rivers, which drive crucial ecosystem processes. The microorganisms of biofilms are surrounded by a self-produced extracellular polymeric substance (EPS). In this study, we investigated the effects of different hydrodynamic conditions on the composition, spatiotemporal distribution of different extracellular polymeric substances, and the architecture of biofilms. Multidisciplinary methods offer complementary insights into complex architecture correlations in biofilms. The biofilms formed in turbulent flow with high shear force were thin but dense. However, the biofilms formed under laminar flow conditions were thick but relatively loose. The thickness and compactness of the biofilms formed in the transitional flow were different from those of the other biofilms. The compact structure of the biofilm helped to resist shear forces to minimize detachment. Under the turbulent flow condition, bacteria, exopolysaccharides, and extracellular proteins permeated through the biofilm, and more extracellular polysaccharides enveloped bacteria and extracellular proteins. However, under the transitional flow condition, the extracellular polysaccharides and proteins were fewer than those under the turbulent flow condition; bacteria and algae were seen more prominently in the upper layer of the biofilm. Under the laminar flow condition, the distribution of extracellular polysaccharides, extracellular proteins, and bacteria was relatively uniform throughout the biofilm. The number of extracellular polysaccharides was greater than that of extracellular proteins. The total number of EPS in the biofilm was the largest under turbulent flow condition, followed by that under transitional flow condition and then under laminar flow condition. This study also observed that soluble EPS (S-EPS) were secreted first, followed by loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). In particular, the adhesion of LB-EPS and flocculation capability of TB-EPS play some role in regulating biofilm formation. This study would help to perfect the five-stages theory of biofilm formation.


Subject(s)
Extracellular Polymeric Substance Matrix , Hydrodynamics , Bacteria , Biofilms , Ecosystem , Polysaccharides/chemistry , Proteins/chemistry
13.
Bull Environ Contam Toxicol ; 109(1): 30-43, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35678830

ABSTRACT

Red mud/biochar composite material (RMBC), which was applied as heavy metal passivator in this research, was prepared with red mud (the bauxite residue) and cornstalk under anoxic sintering condition. Based on the batch experiments in Pb contaminated soil, the passivating properties of several materials, including red mud (RM), biochar (BC), RMBC and phosphate-containing RMBC (PRMBC), were investigated in comparison with each other. Some interesting results are as follows: through anoxic thermal activation, a rough and porous structure of RMBC was obtained. Substances such as Fe3O4 and metal-organic complexes generated in RMBC provided effective sites for Pb passivation; and the mechanisms were speculated as the precipitation between Pb2+ and the carbonate (or hydroxide), as well as the complexation reaction between Pb and metal organic complexes through ligand bonding. The pot experiments showed the promotion effects of four passivators on the growth of red onion were in the following order: PRMBC > RMBC > BC > RM. PRMBC stabilized Pb content in soil significantly due to the formation of insoluble substances, with the minimum transfer factor and bioconcentration factor for plant growth. The evidences above implied the composite materials (PRMBC and RMBC) would be potential passivators for heavy metal-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Charcoal/chemistry , Lead , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/analysis
14.
J Hazard Mater ; 437: 129277, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35724619

ABSTRACT

Biofilters usually have poor VOC removal performance at temperatures lower than 20 °C. In this study, two quorum sensing (QS) enhancement methods, which are addition of exogenous N-acyl-homoserine lactones (AHLs) and inoculation of AHL-producing bacteria, were applied in biofilters treating gaseous toluene at a low temperature of 12 °C. Their effects on biofilter performance and biofilm characteristics were investigated. The results showed that adding exogenous AHLs and AHL-producing bacteria in biofilters raised the average toluene elimination capacity by 39% and 26% respectively, and raised the average mineralization efficiency by 25% and 47% respectively in first 24 days. In addition, the two QS enhancement methods could increase the attached biomass by 48% and 87% respectively and made the biofilm distribute more uniform by increasing its extracellular polymeric substances content and microbial adhesive strength. The two QS enhancement methods resulted in more mesopores in biofilm, lower O/C and (O+N)/C of organic elements in biofilm, and increased the solubility of toluene in liquid phase, which all benefit VOCs mass transfer in biofilters. These results demonstrate that QS enhancement methods have the potential to optimize the biofilm and thus improve the performance of biofilters treating VOCs at a low temperature. This work provides us a new choice to improve industrial-scale biofilters treating VOCs at high latitude regions or in winter.


Subject(s)
Quorum Sensing , Toluene , Acyl-Butyrolactones , Bacteria , Biofilms , Gases , Temperature , Toluene/analysis
15.
Environ Sci Pollut Res Int ; 28(47): 67022-67031, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34244936

ABSTRACT

Sudden odor incidents occurring in the source water have been a severe problem for water suppliers. In order to apply emergency control measures effectively, it is necessary to identify the target compounds responsible for odor incidents rapidly. The present work identified the odorants and explored emergency disposal mechanisms for sudden and severe odors in the QT River's drinking water source (HZ city, China). Medicinal, chemical, septic, and musty odors with strong intensities were detected in the source water. The effect of conventional treatments of drinking water treatment plant (DWTP) on odors' removal was limited, which was evident by the presence of medicinal, chemical, and musty odors with moderate intensities in the effluent of DWTP. Total seventeen odorants were identified successfully in the source water of QT River and the effluent of DWTP. The measured OAVs and reconstituting the identified odorants explained 87, 87, 89, and 94% of medicinal, chemical, septic, and musty odors, respectively, in the source water of the QT River and 90, 87, and 88% of medicinal, chemical, and musty odors in the effluent. Styrene, phenol, 2-chlorophenol, 2-tert-butylphenol, and 2-methylphenol were associated with the medicinal odor, while propyl sulfide, diethyl disulfide, propyl disulfide, and indole were related to the septic odor. Geosmin and 2-methylisoborneol (2-MIB) were responsible for the musty odor, and cyclohexanone, 1,4-dichlorobenzene, and nitrobenzene were involved with the chemical odor. Based on the characteristics of identified odorants, powdered activated carbon (PAC) was applied to control the odors in the QT River. The results indicated that the medicinal, chemical, septic, and musty odors could be removed entirely after adding 15 mg/L PAC, which effectively controlled emergency odor problems. Overall, the study would offer a scientific basis and operational reference for emergency odor management and control in DWTP with similar complicated odor incidents.


Subject(s)
Water Pollutants, Chemical , Water Purification , Cities , Odorants , Rivers , Water Pollutants, Chemical/analysis
16.
J Environ Sci (China) ; 103: 108-118, 2021 May.
Article in English | MEDLINE | ID: mdl-33743893

ABSTRACT

Biotrickling filters (BTFs) for hydrophobic chlorobenzene (CB) purification are limited by mass transfer and biodegradation. The CB mass transfer rate could be improved by 150 mg/L rhamnolipids. This study evaluated the combined use of Fe3+ and Zn2+ to enhance biodegradation in a BTF over 35 day. The effects of these trace elements were analysed under different inlet concentrations (250, 600, 900, and 1200 mg/L) and empty bed residence times (EBRTs; 60, 45, and 32 sec). Batch experiments showed that the promoting effects of Fe3+/Zn2+ on microbial growth and metabolism were highest for 3 mg/L Fe3+ and 2 mg/L Zn2+, followed by 2 mg/L Zn2+, and lowest at 3 mg/L Fe3+. Compared to BTF in the absence of Fe3+ and Zn2+, the average CB elimination capacity and removal efficiency in the presence of Fe3+ and Zn2+ increased from 61.54 to 65.79 g/(m3⋅hr) and from 80.93% to 89.37%, respectively, at an EBRT of 60 sec. The average removal efficiency at EBRTs of 60, 45, and 32 sec increased by 2.89%, 5.63%, and 11.61%, respectively. The chemical composition (proteins (PN), polysaccharides (PS)) and functional groups of the biofilm were analysed at 60, 81, and 95 day. Fe3+ and Zn2+ significantly enhanced PN and PS secretion, which may have promoted CB adsorption and biodegradation. High-throughput sequencing revealed the promoting effect of Fe3+ and Zn2+ on bacterial populations. The combination of Fe3+ and Zn2+ with rhamnolipids was an efficient method for improving CB biodegradation in BTFs.


Subject(s)
Air Pollutants , Filtration , Air Pollutants/analysis , Biodegradation, Environmental , Bioreactors , Chlorobenzenes , Glycolipids , Zinc
17.
Environ Pollut ; 271: 116373, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33418288

ABSTRACT

The odor problems in river-type micro-polluted water matrixes are complicated compared to those in lakes and reservoirs. For example, the TY River in Jiangsu Province has been associated with complex odors, whereas the specific odor compounds were not clear. In this paper, a comprehensive study on characterizing the odors and odorants in source water from the TY River was conducted. Six odor types, including earthy, marshy, fishy, woody, medicinal, and chemical odors, were detected for the first time; correspondingly, thirty-three odor-causing compounds were identified. By means of evaluating odor activity values and reconstituting the identified odorants, 95, 93, 92, 90, 89 and 88% of the earthy, marshy, fishy, woody, medicinal and chemical odors in the source waters could be clarified. Geosmin and 2-methylisoborneol were associated with earthy odor, while amyl sulfide, dibutyl sulfide, propyl sulfide, dimethyl disulfide, dimethyl trisulfide and indole were related to marshy odor. The major woody and fishy odor compounds were vanillin, geraniol, ß-cyclocitral and 2,4-decadienal, 2-octenal, respectively. Medicinal and chemical odors were mainly caused by 2-chlorophenol, 4-bromophenol, 2,6-dichlorophenol and naphthalene, and 1,4-dichlorobenzene, respectively. This is the first study in which six odor types and thirty-three odorants were identified simultaneously in a river-type micro-polluted water source, which can offer a reference for odor management in drinking water treatment plants.


Subject(s)
Odorants , Water Purification , Animals , Rivers , Water , Water Pollution
18.
Chemosphere ; 269: 128691, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33162163

ABSTRACT

Ozone and biological activated carbon (BAC) are known to be effective at removing odors in drinking water. However, the specific variations in complex odors and odorants along the course of advanced treatments in full-scale drinking water treatment plants (DWTP) have remained unclear. In this paper, the migration of odors and odorants through pre-ozonation, sedimentation, post-ozonation, and BAC treatment processes were studied from January to December 2019 in a DWTP. The results indicated that septic, musty, and chemical odors with intensities of 6-6.7, 6-7.5, 4-5 could be removed by both ozonation and BAC, while grassy, fishy odors with intensities of 3.3-4.8, 2.3-5.8 could not be removed until the BAC step. Twenty-four odorants identified in raw water were classified as musty (2-methylisoborneol, geosmin), chemical (e.g. indane, eucalyptol), septic (e.g. dimethyl disulfide, pentanethiol), fishy (2,4-decadienal) and grassy (nonanal, decanal) odor compounds. It is noteworthy that eleven additional odorants were produced after ozonation; in addition, the concentrations of fishy and grassy odorants were increased after ozonation, and the concentrations of musty, septic, fishy, and grassy odorants were increased after sedimentation, suggesting that sedimentation and ozonation should be carefully managed. BAC was the most effective at removing the above odorants simultaneously. This study would be helpful for providing more insights into the migration of odorants along treatment processes and understanding the mitigation of odors in DWTPs using raw waters with complex odors.


Subject(s)
Drinking Water , Ozone , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Odorants/analysis , Poaceae , Water Pollutants, Chemical/analysis
19.
Chemosphere ; 250: 126261, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32109701

ABSTRACT

The aim of this study was to evaluate the influence of rhamnolipid (RL) and ferric ions on the performance of a biotrickling filter (BTF) for the removal of gas-phase 1,2-dichlorobenzene (o-DCB). A comprehensive investigation of microbial growth, pollutant solubility, extracellular polymeric substances (EPS) and enzymatic activity in o-DCB degradation by an isolated strain Bacillus cereus DL-1 with/without RL and Fe3+ were carried out using batch microcosm experiments. In addition, o-DCB removal performance, biofilm morphology, and microbial community structures in two identical lab-scale biotrickling filters (named BTF1 and BTF2) inoculated with strain DL-1 were studied. The batch microcosm experiments demonstrated that 120 mg L-1 RL and 4 mg L-1 Fe3+ could enhance the biodegradation of o-DCB, which may be due to promotion on bacterial growth, o-DCB solubilization, C12O enzyme activity, and polysaccharide (PS) and protein (PN) in EPS. Fourier transform infrared (FTIR) spectra indicated that the addition of RL with Fe3+ had notable effects on the functional groups of PS and PN in EPS. The experimental results in BTFs indicate that the removal efficiency of o-DCB decreased from 100% to 56.4% for BTF1, which was not fed with RL and Fe3+, and from 100% to 80.3% for BTF2, which was fed with RL and Fe3+, when the inlet loading rate increased from 4.88 to 102 g m-3 h-1 at an empty bed residence time of 60 s. In addition, the microbial adhesive strength and the microbial community structure were different among both BTFs, highlighting the positive effects of RL and Fe3+.


Subject(s)
Air Pollutants/chemistry , Chlorobenzenes/chemistry , Glycolipids/chemistry , Air Pollutants/analysis , Biodegradation, Environmental , Biofilms , Bioreactors/microbiology , Filtration/methods , Ions , Iron
20.
J Cell Mol Med ; 24(6): 3431-3437, 2020 03.
Article in English | MEDLINE | ID: mdl-32020730

ABSTRACT

CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.


Subject(s)
Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , E2F3 Transcription Factor/biosynthesis , MicroRNAs/genetics , RNA, Circular/genetics , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 2/metabolism , Female , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , HT29 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...