Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(3): 229-234, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38512033

ABSTRACT

Objective To investigate the anti-inflammatory mechanism of ß-caryophyllene (BCP) on lipopolysaccharide (LPS)-induced systemic inflammation in mice. Methods C57BL mice were divided into control group, LPS-treated group, dexamethasone-treated group, and BCP-treated group. Twelve hours after the establishment of the whole body inflammation model by intraperitoneal injection of LPS, the serum levels of interleukin 1ß(IL-1ß), tumor necrosis factor α (TNF-α), and IL-6 were measured by ELISA. The protein levels of nuclear factor κB p65(NF-κB p65), myeloid differentiation primary response 88 (MyD88), and Toll-like receptor 4 (TLR4) in spleen tissue were assessed by Western blot analysis. ResultsCompared with the control group, the serum levels of the inflammatory cytokines IL-1ß, TNF-α and IL-6 in the LPS-treated group were significantly increased. In addition, the pro-tein levels of NF-κB p65, MyD88 and TLR4 were increased in spleen tissues. Compared with the LPS-treated group, the protein levels of IL-1ß, TNF-α and IL-6 in the BCP-treated group were decreased significantly. Furthermore, the protein levels of NF-κB p65, MyD88 and TLR4 in spleen tissue showed a remarkable reduction. The inhibitory effect was notably better in the 3.5 µg/(L.d) BCP-treated group than in the 3 µg/(L.d) BCP-treated group. Conclusion BCP exerts anti-inflammatory effects by downregulating inflammatory cytokine expression through the inhibition of the NF-κB signaling pathway.


Subject(s)
NF-kappa B , Polycyclic Sesquiterpenes , Toll-Like Receptor 4 , Animals , Mice , Mice, Inbred C57BL , Cytokines , Tumor Necrosis Factor-alpha , Interleukin-6/genetics , Lipopolysaccharides , Myeloid Differentiation Factor 88/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing , Inflammation/drug therapy , Interleukin-1beta , Anti-Inflammatory Agents/pharmacology
2.
Metabolites ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38392991

ABSTRACT

A novel ceramide compound, named Aspercerebroside A (AcA), was successfully isolated from the ethyl acetate layer of the marine symbiotic fungus Aspergillus sp. AcA exhibited notable anti-inflammatory activity by effectively inhibiting the production of nitric oxide (NO) in RAW 264.7 cells at concentrations of 30 µg/mL and 40 µg/mL, offering a promising avenue for the treatment of inflammatory diseases. To optimize the yield of glycosylceramide (AcA), a series of techniques, including single-factor experiments, orthogonal experiments, and response surface optimization, were systematically employed to fine-tune the composition of the fermentation medium. Initially, the optimal carbon source (sucrose), nitrogen source (yeast extract powder), and the most suitable medium salinity (14 ppt) were identified through single-factor experiments. Subsequently, orthogonal experiments, employing an orthogonal table for planning and analyzing multifactor experiments, were conducted. Finally, a mathematical model, established using a Box-Behnken design, comprehensively analyzed the interactions between the various factors to determine the optimal composition of the fermentation medium. According to the model's prediction, when the sucrose concentration was set at 37.47 g/L, yeast extract powder concentration at 19.66 g/L, and medium salinity at 13.31 ppt, the predicted concentration of glycosylceramide was 171.084 µg/mL. The experimental results confirmed the model's accuracy, with the actual average concentration of glycosylceramide under these conditions measured at 171.670 µg/mL, aligning closely with the predicted value.

3.
Plant Dis ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37368447

ABSTRACT

Lonicera japonica is a perennial shrub that has been used since ancient times as a medicine to clear heat and detoxify poisons. Its branches (the vine of L. japonica) and unopened flower buds (honeysuckle) can be used as medicine to treat external wind heat or febrile disease fever (Shang, Pan, Li, Miao, & Ding, 2011). In July 2022, a serious disease was observed in L. japonica individuals planted in an area of experimental base of Nanjing Agricultural University (N 32°02', E 118°86'), Nanjing, Jiangsu Province, China. More than 200 Lonicera plants were surveyed, and the incidence of leaf rot in Lonicera leaves was over 80%. The initial symptoms were of chlorotic spots and gradual development of visible white mycelia and powdery substances (fungal spores) were observed on the leaves. Both the front and back of the leaves gradually appeared as brown diseased spots. Thus, a combination of multiple disease spots causes leaf wilting and the leaves eventually fall off. Leaves with typical symptoms were collected and cut into approximately 5 mm square fragments. The tissues were sterilized in 1% NaOCl for 90 s and 75% ethanol for 15 s and then washed with sterile water three times. The treated leaves were cultured on Potato Dextrose Agar (PDA) medium at 25℃. When mycelia grew around the leaf pieces, fungal plugs were collected along the outer edge of the colony and transferred to fresh PDA plates using a cork borer. Eight fungal strains with the same morphology were obtained after three rounds of subculturing. The colony was initially white with a fast growth rate, and occupied a 9-cm-diameter culture dish within 24 h. The colony turned gray-black in the later stages. After 2 days, small black sporangia spots appeared on top of the hyphae. The sporangia were yellow when immature, and black at maturity. The spores were oval with an average size of 29.6 (22.4-36.9) × 35.3 (25.8-45.2) µm (n = 50) in diameter. To identify the pathogen, fungal hyphae were scraped, and the fungal genome was extracted using a kit (BioTeke, Cat#DP2031). The internal transcribed spacer region (ITS) of the fungal genome was amplified with primers ITS1/ITS4, and the results of ITS sequencing were uploaded to the GenBank database with accession number OP984201. The phylogenetic tree was constructed using the neighbor-joining method with MEGA11 software. Phylogenetic analysis based on ITS showed that the fungus was grouped together with Rhizopus arrhizus (MT590591) and had high bootstrap support. Thus, the pathogen was identified as R. arrhizus. To verify Koch's postulates, 60 ml of a spore suspension (1×104 conidia/ml) was sprayed onto the surface of 12 healthy Lonicera plants, and the other 12 plants were sprayed with sterile water as a control. All plants were kept in the greenhouse at 25°C with 60% relative humidity. After 14 d, the infected plants showed symptoms similar to those of the original diseased plants. The strain was isolated again from the diseased leaves of artificially inoculated plants and verified as the original strain by sequencing. The results showed that R. arrhizus was the pathogen responsible for Lonicera leaf rot. Previous studies have shown that R. arrhizus causes garlic bulb rot (Zhang et al., 2022) and Jerusalem artichoke tuber rot (Yang et al., 2020). To our knowledge, this is the first report of R. arrhizus causing Lonicera leaf rot disease in China. Information regarding the identification of this fungus may be helpful for controlling the leaf rot disease.

4.
Microbiol Spectr ; : e0361122, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36786562

ABSTRACT

The environmentally friendly biological control strategy that relies on beneficial bacterial inoculants to improve plant disease resistance is a promising strategy. Previously, it has been demonstrated that biocontrol bacteria treatments can change the plant rhizosphere microbiota but whether plant signaling pathways, especially those related to disease resistance, mediate the changes in rhizosphere microbiota has not been explored. Here, we investigated the complex interplay among biocontrol strains, plant disease resistance-related pathways, root exudates, rhizosphere microorganisms, and pathogens to further clarify the biocontrol mechanism of biocontrol bacteria by using plant signaling pathway mutants. Bacillus cereus AR156, which was previously isolated from forest soil by our laboratory, can significantly control tomato bacterial wilt disease in greenhouse and field experiments. Moreover, compared with the control treatment, the B. cereus AR156 treatment had a significant effect on the soil microbiome and recruited 35 genera of bacteria to enrich the rhizosphere of tomato. Among them, the relative rhizosphere abundance of nine genera, including Ammoniphilus, Bacillus, Bosea, Candidimonas, Flexivirga, Brevundimonas, Bordetella, Dyella, and Candidatus_Berkiella, was regulated by plant disease resistance-related signaling pathways and B. cereus AR156. Linear correlation analysis showed that the relative abundances of six genera in the rhizosphere were significantly negatively correlated with pathogen colonization in roots. These rhizosphere bacteria were affected by plant root exudates that are regulated by signaling pathways. IMPORTANCE Our data suggest that B. cereus AR156 can promote the enrichment of beneficial microorganisms in the plant rhizosphere by regulating salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling pathways in plants, thereby playing a role in controlling bacterial wilt disease. Meanwhile, Spearman correlation analysis showed that the relative abundances of these beneficial bacteria were correlated with the secretion of root exudates. Our study reveals a new mechanism for SA and JA/ET signals to participate in the adjustment of plant resistance whereby the signaling pathways adjust the rhizosphere microecology by changing the root exudates and thus change plant resistance. On the other hand, biocontrol strains can utilize this mechanism to recruit beneficial bacteria by activating disease resistance-related signaling pathways to confine the infection and spread of pathogens. Finally, our data also provide a new idea for the in-depth study of biocontrol mechanisms.

5.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012208

ABSTRACT

Plant defense and growth rely on multiple transcriptional factors (TFs). Repression of shoot growth (RSG) is a TF belonging to a bZIP family in tobacco, known to be involved in plant gibberellin feedback regulation by inducing the expression of key genes. The tobacco calcium-dependent protein kinase CDPK1 was reported to interact with RSG and manipulate its intracellular localization by phosphorylating Ser-114 of RSG previously. Here, we identified tobacco mitogen-activated protein kinase 3 (NtMPK3) as an RSG-interacting protein kinase. Moreover, the mutation of the predicted MAPK-associated phosphorylation site of RSG (Thr-30, Ser-74, and Thr-135) significantly altered the intracellular localization of the NtMPK3-RSG interaction complex. Nuclear transport of RSG and its amino acid mutants (T30A and S74A) were observed after being treated with plant defense elicitor peptide flg22 within 5 min, and the two mutated RSG swiftly re-localized in tobacco cytoplasm within 30 min. In addition, triple-point mutation of RSG (T30A/S74A/T135A) mimics constant unphosphorylated status, and is predominantly localized in tobacco cytoplasm. RSG (T30A/S74A/T135A) showed no re-localization effect under the treatments of flg22, B. cereus AR156, or GA3, and over-expression of this mutant in tobacco resulted in lower expression levels of downstream gene GA20ox1. Our results suggest that MAPK-associated phosphorylation sites of RSG regulate its localization in tobacco, and that constant unphosphorylation of RSG in Thr-30, Ser-74, and Thr-135 keeps RSG predominantly localized in cytoplasm.


Subject(s)
Nicotiana , Plant Cells , Gibberellins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Plant Cells/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Nicotiana/genetics , Nicotiana/metabolism
6.
J Colloid Interface Sci ; 579: 832-841, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32679380

ABSTRACT

Biomass-derived nitrogen-self-doped carbon was prepared by a simple and green approach based on the direct pyrolysis of pork heart using KOH as an activation reagent at controlled temperatures (700-900 °C). The obtained samples displayed a specific surface area up to 1718.84 m2 g-1, high content of nitrogen (3.03%) and interconnected porous structure, which is able to expose abundant active sites and promote mass transfer. Electrochemical measurements showed that our catalyst possessed a high electrocatalytic activity for oxygen reduction reaction in alkaline solution that is equivalent to that of commercial Pt/C. The sample carbonized at 700 °C (PC-APHs-700) with the onset potential of 0.92 V and half-wave potential of 0.80 V possessed the highest concentrations of graphite and pyridine nitrogen and exhibited the best performance among the PC-APHs-T samples. In addition, PC-APHs-700 had a higher long-term stability and stronger methanol tolerance than commercial Pt/C. This work demonstrates that it is a promising approach to develop and utilize carbon materials with added value as effective metal-free cathode catalysts for alkaline fuel cells based on economic and environmental friendly renewable biomass.


Subject(s)
Carbon , Oxygen , Animals , Nitrogen , Oxidation-Reduction , Porosity
7.
Neuroreport ; 30(18): 1299-1306, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31714482

ABSTRACT

Our previous studies showed that propane-2-sulfonic acid octadec-9-enyl-amide (N15), a novel peroxisome proliferator-activated receptors α and γ (PPARα/γ) dual agonist, protected against ischaemia-induced acute brain damage in mice and improved cognitive ability in the chronic phase of ischaemic stroke. It is well known that hippocampal neurogenesis is closely related to cognitive function. In the present study, we investigated the effect of N15 on hippocampal neurogenesis and neuroplasticity in a middle cerebral artery occlusion (MCAO) rat model. The middle cerebral artery of rats was blocked for 2 hours. Oral administration of 100 mg/kg N15 or vehicle was given once daily for days 2-13 after MCAO. The newly mature neurons were detected by staining. The expressions of synapse-related proteins were observed by qRT-PCR or western blotting. We found that N15-treated rats showed improved survival post-MCAO. In addition, N15 treatment markedly increased the newly mature neurons and enhanced the expression levels of growth-associated protein-43, synaptophysin, brain-derived neurotrophic factor and neurotrophin-3 in the hippocampus. Moreover, N15 promoted the activation of PPARα and PPARγ on day 7 and 14 after cerebral ischaemia. These results reveal that N15 may promote neurogenesis and neuroplasticity in MCAO rats through the activation of the PPARα/γ dual signal pathway.


Subject(s)
Brain Ischemia/physiopathology , Hippocampus/drug effects , Neurogenesis/drug effects , Neuronal Plasticity/drug effects , Neuroprotective Agents/pharmacology , PPAR alpha/agonists , PPAR gamma/agonists , Sulfonic Acids/pharmacology , Animals , Hippocampus/physiopathology , Infarction, Middle Cerebral Artery , Male , Neurons/drug effects , Rats , Rats, Sprague-Dawley
8.
Front Microbiol ; 10: 652, 2019.
Article in English | MEDLINE | ID: mdl-31001229

ABSTRACT

The watermelon (Citrullus lanatus) is one of the most important horticultural crops for fruit production worldwide. However, the production of watermelon is seriously restricted by one kind of soilborne disease, Fusarium wilt, which is caused by Fusarium oxysporum f. sp. niveum (Fon). In this study, we identified an efficient PGPR strain B. velezensis F21, which could be used in watermelon production for Fon control. The results of biocontrol mechanisms showed that B. velezensis F21 could suppress the growth and spore germination of Fon in vitro. Moreover, B. velezensis F21 could also enhance plant basal immunity to Fon by increasing the expression of plant defense related genes and activities of some defense enzymes, such as CAT, POD, and SOD. To elucidate the detailed mechanisms regulating B. velezensis F21 biocontrol of Fusarium wilt in watermelon, a comparative transcriptome analysis using watermelon plant roots treated with B. velezensis F21 or sterile water alone and in combination with Fon inoculation was conducted. The transcriptome sequencing results revealed almost one thousand ripening-related differentially expressed genes (DEGs) in the process of B. velezensis F21 triggering ISR (induced systemic resistance) to Fon. In addition, the Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that numerous of transcription factors (TFs) and plant disease resistance genes were activated and validated by using quantitative real-time PCR (qRT-PCR), which showed significant differences in expression levels in the roots of watermelon with different treatments. In addition, genes involved in the MAPK signaling pathway and phytohormone signaling pathway were analyzed, and the results indicated that B. velezensis F21 could enhance plant disease resistance to Fon through the above related genes and phytohormone signal factors. Taken together, this study substantially expands transcriptome data resources and suggests a molecular framework for B. velezensis F21 inducing systemic resistance to Fon in watermelon. In addition, it also provides an effective strategy for the control of Fusarium wilt in watermelon.

9.
Article in English | MEDLINE | ID: mdl-28108366

ABSTRACT

The formation of the primary shell is a vital process in marine bivalves. Ocean acidification largely influences shell formation. It has been reported that enzymes involved in phenol oxidation, such as tyrosinase and phenoloxidases, participate in the formation of the periostracum. In the present study, we cloned a tyrosinase gene from Crassostrea angulata named Ca-tyrA1, and its potential function in early larval shell biogenesis was investigated. The Ca-tyrA1 gene has a full-length cDNA of 2430bp in size, with an open reading frame of 1896bp in size, which encodes a 631-amino acid protein that includes a 24-amino acid putative signal peptide. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed that Ca-tyrA1 transcription mainly occurs at the trochophore stage, and the Ca-tyrA1 mRNA levels in the 3000ppm treatment group were significantly upregulated in the early D-veliger larvae. WMISH and electron scanning microscopy analyses showed that the expression of Ca-tyrA1 occurs at the gastrula stage, thereby sustaining the early D-veliger larvae, and the shape of its signal is saddle-like, similar to that observed under an electron scanning microscope. Furthermore, the RNA interference has shown that the treatment group has a higher deformity rate than that of the control, thereby indicating that Ca-tyrA1 participates in the biogenesis of the primary shell. In conclusion, and our results indicate that Ca-tyrA1 plays a vital role in the formation of the larval shell and participates in the response to larval shell damages in Crassostrea angulata that were induced by ocean acidification.


Subject(s)
Crassostrea/enzymology , Crassostrea/genetics , Monophenol Monooxygenase/genetics , Seawater/chemistry , Animal Shells/enzymology , Animal Shells/growth & development , Animals , Crassostrea/growth & development , Hydrogen-Ion Concentration , Larva , Microscopy, Electron, Scanning , Monophenol Monooxygenase/metabolism , Oceans and Seas , Polymerase Chain Reaction
10.
PLoS One ; 10(6): e0129261, 2015.
Article in English | MEDLINE | ID: mdl-26046992

ABSTRACT

Chitinolytic enzymes have an important physiological significance in immune and digestive systems in plants and animals, but chitinase has not been identified as having a role in the digestive system in molluscan. In our study, a novel chitinase homologue, named Ca-Chit, has been cloned and characterized as the oyster Crassostrea angulate. The 3998bp full-length cDNA of Ca-Chit consisted of 23bp 5-UTR, 3288 ORF and 688bp 3-UTR. The deduced amino acids sequence shares homologue with the chitinase of family 18. The molecular weight of the protein was predicted to be 119.389 kDa, with a pI of 6.74. The Ca-Chit protein was a modular enzyme composed of a glycosyl hydrolase family 18 domain, threonine-rich region profile and a putative membrane anchor domain. Gene expression profiles monitored by quantitative RT-PCR in different adult tissues showed that the mRNA of Ca-Chit expressed markedly higher visceral mass than any other tissues. The results of the whole mount in-situ hybridization displayed that Ca-Chit starts to express the visceral mass of D-veliger larvae and then the digestive gland forms a crystalline structure during larval development. Furthermore, the adult oysters challenged by starvation indicated that the Ca-Chit expression would be regulated by feed. All the observations made suggest that Ca-Chit plays an important role in the digestive system of the oyster, Crassostrea angulate.


Subject(s)
Chitinases/metabolism , Crassostrea/enzymology , Digestive System/enzymology , Amino Acid Sequence , Animals , Base Sequence , Chitinases/classification , Chitinases/genetics , Cloning, Molecular , Crassostrea/genetics , Crassostrea/growth & development , DNA, Complementary/chemistry , DNA, Complementary/genetics , Digestive System/metabolism , Eating , Gene Expression Regulation, Developmental , In Situ Hybridization , Larva/enzymology , Larva/genetics , Larva/growth & development , Molecular Sequence Data , Phylogeny , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Starvation
11.
Mol Biol Rep ; 42(5): 963-75, 2015 May.
Article in English | MEDLINE | ID: mdl-25399080

ABSTRACT

Caspases have been demonstrated to possess important functions in apoptosis and immune system in vertebrate. But there is less information reported on the oyster larval development. In the present work, two full-length molluscan caspase genes, named Cacaspase-2 and Cacaspase-3, were characterized for the first time from Fujian oyster, Crassostrea angulata. Which respectively encode two predicted proteins both containing two caspase domains of p20 and p10 including the cysteine active site pentapeptide "QACRG" and the histidine active site signature. Otherwise Cacaspase-2 also contains a caspase recruitment domain. Homology and phylogenetic analysis showed that Cacaspase-2 shared high similarity with initiator caspase-2 groups, but Cacaspase-3 clustered together with executioner caspase-3 groups. Cacaspase-2 and Cacaspase-3 mRNA were both highly expressed in gills and labial palp and were significantly expressed highly in larvae during settlement and metamorphosis. Through the whole mount in situ hybridization, the location of Cacaspase-2 is in the foot of the oyster larvae and the location of Cacaspase-3 is in both the foot and velum tissues. These results implied that Cacaspase-2 and Cacaspase-3 genes play a key role in the loss of foot and Cacaspase-3 gene has an important function in the loss of velum during larvae metamorphosis in C. angulata.


Subject(s)
Caspases/genetics , Crassostrea/genetics , Metamorphosis, Biological/genetics , Amino Acid Sequence , Animals , Caspases/physiology , Cloning, Molecular , Crassostrea/growth & development , Evolution, Molecular , Gene Expression , Genes , Metamorphosis, Biological/physiology , Molecular Sequence Data , Organ Specificity , Phylogeny , Protein Interaction Domains and Motifs
12.
Gene ; 537(2): 294-301, 2014 Mar 10.
Article in English | MEDLINE | ID: mdl-24374472

ABSTRACT

During a large-scale screen of the larval transcriptome library of the Portuguese oyster, Crassostrea angulata, the oyster gene RACK, which encodes a receptor of activated protein kinase C protein was isolated and characterized. The cDNA is 1,148 bp long and has a predicted open reading frame encoding 317 aa. The predicted protein shows high sequence identity to many RACK proteins of different organisms including molluscs, fish, amphibians and mammals, suggesting that it is conserved during evolution. The structural analysis of the Ca-RACK1 genomic sequence implies that the Ca-RACK1 gene has seven exons and six introns, extending approximately 6.5 kb in length. It is expressed ubiquitously in many oyster tissues as detected by RT-PCR analysis. The Ca-RACK1 mRNA expression pattern was markedly increased at larval metamorphosis; and was further increased along with Ca-RACK1 protein synthesis during epinephrine-induced metamorphosis. These results indicate that the Ca-RACK1 plays an important role in tissue differentiation and/or in cell growth during larval metamorphosis in the oyster, C. angulata.


Subject(s)
Crassostrea/physiology , Larva/genetics , Proteins/genetics , Amino Acid Sequence , Animals , Base Sequence , Conserved Sequence , Crassostrea/genetics , DNA, Complementary/genetics , Epinephrine/pharmacology , Exons , Gene Expression Regulation, Developmental , Introns , Metamorphosis, Biological/drug effects , Metamorphosis, Biological/genetics , Molecular Sequence Data , Phylogeny , Proteins/metabolism
13.
Comp Biochem Physiol B Biochem Mol Biol ; 164(3): 168-75, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23274282

ABSTRACT

We cloned and characterized a complete cDNA encoding a dopamine receptor (DAR) named Ca-DA1R from Fujian oyster, Crassostrea angulata. The 2843 bp long cDNA sequence includes a 916-bp 5'-UTR, the 1197 bp ORF which encodes a putative protein of 399 amino acids, and a 729 bp 3'-UTR. The Ca-DA1R sequence possesses typical characteristics of a D1 receptor: two main features being a short third intracellular loop and a long inner COOH-terminal tail domain. Using a real-time PCR approach, expression profiles of Ca-DA1R were analyzed in adult tissues and during the four stages of ovarian development. Ca-DA1R was expressed ubiquitously, although transcript levels varied between tissues, with higher mRNA levels detected in the ovary, labial palps and mantle. During the four stages of ovarian development, Ca-DA1R mRNA expression level was higher in the proliferation stage than in the other three stages during the ovary cycle. In situ hybridization results reveal that the Ca-DA1R mRNA is mainly expressed in the epithelium of the gonoducts. These observations suggest that Ca-DA1R binding of DA probably plays an important role in early ovarian development and via regulating oocyte locomotion cooperates with the 5-HT receptor system during the ovarian cycle in C. angulata.


Subject(s)
Crassostrea/genetics , Ovary/physiology , Receptors, Dopamine/genetics , Receptors, Dopamine/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Crassostrea/cytology , Crassostrea/physiology , DNA, Complementary/genetics , Female , Gene Expression Profiling , Molecular Sequence Data , Ovary/cytology , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Dopamine/chemistry , Sequence Alignment , Sequence Analysis, DNA , Time Factors , Tissue Distribution/genetics
14.
Biomarkers ; 14(8): 624-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19740022

ABSTRACT

Human esophageal cancer is a common occurring malignancy with high mortality rate partially due to lack of tools for early diagnosis. In this study, we have analysed tumour tissue from 50 cases of primary esophageal cancer. Our studies showed that the activity of monoamine oxidase (MAO) and the expression of MAO-A were strikingly decreased in the tumour tissues of 48 (96%) and 44 (88%) patients, respectively. These results suggest that the activity of MAO and the expression of MAO-A may be used as new diagnostic markers for esophageal cancers.


Subject(s)
Biomarkers, Tumor/analysis , Esophageal Neoplasms/enzymology , Monoamine Oxidase/metabolism , Adult , Down-Regulation , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/pathology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...