Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Ann Neurol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591875

ABSTRACT

OBJECTIVE: The aim of this study was to assess the diagnostic utility of cerebrospinal fluid (CSF) myelin oligodendrocyte glycoprotein antibodies (MOG-IgG) testing. METHODS: We retrospectively identified patients for CSF MOG-IgG testing from January 1, 1996, to May 1, 2023, at Mayo Clinic and other medical centers that sent CSF MOG-IgG for testing including: controls, 282; serum MOG-IgG positive MOG antibody-associated disease (MOGAD), 74; serum MOG-IgG negative high-risk phenotypes, 73; serum false positive MOG-IgG with alternative diagnoses, 18. A live cell-based assay assessed CSF MOG-IgG positivity (IgG-binding-index [IBI], ≥2.5) using multiple anti-human secondary antibodies and end-titers were calculated if sufficient sample volume. Correlation of CSF MOG-IgG IBI and titer was assessed. RESULTS: The pan-IgG Fc-specific secondary was optimal, yielding CSF MOG-IgG sensitivity of 90% and specificity of 98% (Youden's index 0.88). CSF MOG-IgG was positive in: 4/282 (1.4%) controls; 66/74 (89%) serum MOG-IgG positive MOGAD patients; and 9/73 (12%) serum MOG-IgG negative patients with high-risk phenotypes. Serum negative but CSF positive MOG-IgG accounted for 9/83 (11%) MOGAD patients, and all fulfilled 2023 MOGAD diagnostic criteria. Subgroup analysis of serum MOG-IgG low-positives revealed CSF MOG-IgG positivity more in MOGAD (13/16[81%]) than other diseases with false positive serum MOG-IgG (3/15[20%]) (p = 0.01). CSF MOG-IgG IBI and CSF MOG-IgG titer (both available in 29 samples) were correlated (Spearman's r = 0.64, p < 0.001). INTERPRETATION: CSF MOG-IgG testing has diagnostic utility in patients with a suspicious phenotype but negative serum MOG-IgG, and those with low positive serum MOG-IgG results and diagnostic uncertainty. These findings support a role for CSF MOG-IgG testing in the appropriate clinical setting. ANN NEUROL 2024.

2.
Ann Neurol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634529

ABSTRACT

OBJECTIVES: To report an autoimmune paraneoplastic encephalitis characterized by immunoglobulin G (IgG) antibody targeting synaptic protein calmodulin kinase-like vesicle-associated (CAMKV). METHODS: Serum and cerebrospinal fluid (CSF) samples harboring unclassified antibodies on murine brain-based indirect immunofluorescence assay (IFA) were screened by human protein microarray. In 5 patients with identical cerebral IFA staining, CAMKV was identified as top-ranking candidate antigen. Western blots, confocal microscopy, immune-absorption, and mass spectrometry were performed to substantiate CAMKV specificity. Recombinant CAMKV-specific assays (cell-based [fixed and live] and Western blot) provided additional confirmation. RESULTS: Of 5 CAMKV-IgG positive patients, 3 were women (median symptom-onset age was 59 years; range, 53-74). Encephalitis-onset was subacute (4) or acute (1) and manifested with: altered mental status (all), seizures (4), hyperkinetic movements (4), psychiatric features (3), memory loss (2), and insomnia (2). Paraclinical testing revealed CSF lymphocytic pleocytosis (all 4 tested), electrographic seizures (3 of 4 tested), and striking MRI abnormalities in all (mesial temporal lobe T2 hyperintensities [all patients], caudate head T2 hyperintensities [3], and cortical diffusion weighted hyperintensities [2]). None had post-gadolinium enhancement. Cancers were uterine adenocarcinoma (3 patients: poorly differentiated or neuroendocrine-differentiated in 2, both demonstrated CAMKV immunoreactivity), bladder urothelial carcinoma (1), and non-Hodgkin lymphoma (1). Two patients developed encephalitis following immune checkpoint inhibitor cancer therapy (atezolizumab [1], pembrolizumab [1]). All treated patients (4) demonstrated an initial response to immunotherapy (corticosteroids [4], IVIG [2]), though 3 died from cancer. INTERPRETATION: CAMKV-IgG is a biomarker of immunotherapy-responsive paraneoplastic encephalitis with temporal and extratemporal features and uterine cancer as a prominent oncologic association. ANN NEUROL 2024.

3.
Ann Neurol ; 94(6): 1086-1101, 2023 12.
Article in English | MEDLINE | ID: mdl-37632288

ABSTRACT

OBJECTIVE: Co-occurring anti-tripartite motif-containing protein 9 and 67 autoantibodies (TRIM9/67-IgG) have been reported in only a very few cases of paraneoplastic cerebellar syndrome. The value of these biomarkers and the most sensitive methods of TRIM9/67-IgG detection are not known. METHODS: We performed a retrospective, multicenter study to evaluate the cerebrospinal fluid and serum of candidate TRIM9/67-IgG cases by tissue-based immunofluorescence, peptide phage display immunoprecipitation sequencing, overexpression cell-based assay (CBA), and immunoblot. Cases in which TRIM9/67-IgG was detected by at least 2 assays were considered TRIM9/67-IgG positive. RESULTS: Among these cases (n = 13), CBA was the most sensitive (100%) and revealed that all cases had TRIM9 and TRIM67 autoantibodies. Of TRIM9/67-IgG cases with available clinical history, a subacute cerebellar syndrome was the most common presentation (n = 7/10), followed by encephalitis (n = 3/10). Of these 10 patients, 70% had comorbid cancer (7/10), 85% of whom (n = 6/7) had confirmed metastatic disease. All evaluable cancer biopsies expressed TRIM9 protein (n = 5/5), whose expression was elevated in the cancerous regions of the tissue in 4 of 5 cases. INTERPRETATION: TRIM9/67-IgG is a rare but likely high-risk paraneoplastic biomarker for which CBA appears to be the most sensitive diagnostic assay. ANN NEUROL 2023;94:1086-1101.


Subject(s)
Nerve Tissue Proteins , Paraneoplastic Cerebellar Degeneration , Humans , Retrospective Studies , Nerve Tissue Proteins/metabolism , Biomarkers/cerebrospinal fluid , Autoantibodies/cerebrospinal fluid , Immunoglobulin G
4.
Article in English | MEDLINE | ID: mdl-37550073

ABSTRACT

BACKGROUND AND OBJECTIVES: Neural antibodies are detected by tissue-based indirect immunofluorescence assay (IFA) in Mayo Clinic's Neuroimmunology Laboratory practice, but the process of characterizing and validating novel antibodies is lengthy. We report our assessment of human protein arrays. METHODS: Assessment of arrays (81% human proteome coverage) was undertaken using diverse known positive samples (17 serum and 14 CSF). Samples from patients with novel neural antibodies were reflexed from IFA to arrays. Confirmatory assays were cell-based (CBA) or line blot. Epitope mapping was undertaken using phage display immunoprecipitation sequencing (PhiPSeq). RESULTS: Control positive samples known to be reactive with linear epitopes of intracellular antigens (e.g., ANNA-1 [anti-Hu]) were readily identified by arrays in 20 of 21 samples. By contrast, 10 positive controls known to be enriched with antibodies against cell surface protein conformational epitopes (e.g., GluN1 subunit of NMDA-R) were indistinguishable from background signal. Three antibodies, previously characterized by other investigators (but unclassified in our laboratory), were unmasked in 4 patients using arrays (July-December 2022): Neurexin-3α, 1 patient; regulator of gene protein signaling (RGS)8, 1 patient; and seizure-related homolog like 2 (SEZ6L2), 2 patients. All were accompanied by previously reported phenotypes (encephalitis, 1; cerebellar ataxia, 3). Patient 1 had subacute onset of seizures and encephalopathy. Neurexin-3α ranked high in CSF (second ranked neural protein) but low in serum (660th overall). Neurexin-3α CBA was positive in both samples. Patient 2 presented with rapidly progressive cerebellar ataxia. RGS8 ranked the highest neural protein in available CSF sample by array (third overall). RGS8-specific line blot was positive. Patients 3 and 4 had rapidly progressive cerebellar ataxia. SEZ6L2 was the highest ranked neural antigen by arrays in all samples (CSF, 1, serum, 2; Patient 3, ranked 9th overall in CSF, 11th in serum; Patient 4, 6th overall in serum]). By PhIPSeq, diverse neurexin-3α epitopes (including cell surface) were detected in CSF from patient 1, but no SEZ6L2 peptides were detected for serum or CSF samples from Patient 3. DISCUSSION: Individualized autoimmune neurologic diagnoses may be accelerated using protein arrays. They are optimal for detection of intracellular antigen-reactive antibodies, though certain cell surface-directed antibodies (neurexin-3α and SEZ6L2) may also be detected.


Subject(s)
Autoimmune Diseases of the Nervous System , Cerebellar Ataxia , RGS Proteins , Humans , Protein Array Analysis , Antibodies , Autoimmune Diseases of the Nervous System/diagnosis , Epitopes
5.
Ann Neurol ; 94(3): 502-507, 2023 09.
Article in English | MEDLINE | ID: mdl-37370243

ABSTRACT

Autoimmune movement disorders are increasingly recognized, but isolated tremor is extremely rare. We describe a 70-year-old male with rapidly progressive, severe postural and intention tremor and weight loss. His cerebrospinal fluid was inflammatory and harbored a neural tissue-restricted antibody. The autoantigen was identified by immunoprecipitation and mass spectrometry and confirmed by antigen-specific assays to be specific for tenascin-R. He was investigated for cancer and diagnosed with follicular lymphoma that expressed tenascin-R suggesting a paraneoplastic origin; cancer treatment and immunotherapy led to complete recovery. With this individualized patient approach and antibody discovery, we expand the spectrum of antibodies accompanying autoimmune hyperkinetic movement disorders. ANN NEUROL 2023;94:502-507.


Subject(s)
Autoimmune Diseases , Tremor , Male , Humans , Aged , Autoimmunity , Autoantibodies , Immunotherapy
6.
Proc Natl Acad Sci U S A ; 120(26): e2214842120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339216

ABSTRACT

Transplantation of stem cell-derived retinal pigment epithelial (RPE) cells is considered a viable therapeutic option for age-related macular degeneration (AMD). Several landmark Phase I/II clinical trials have demonstrated safety and tolerability of RPE transplants in AMD patients, albeit with limited efficacy. Currently, there is limited understanding of how the recipient retina regulates the survival, maturation, and fate specification of transplanted RPE cells. To address this, we transplanted stem cell-derived RPE into the subretinal space of immunocompetent rabbits for 1 mo and conducted single-cell RNA sequencing analyses on the explanted RPE monolayers, compared to their age-matched in vitro counterparts. We observed an unequivocal retention of RPE identity, and a trajectory-inferred survival of all in vitro RPE populations after transplantation. Furthermore, there was a unidirectional maturation toward the native adult human RPE state in all transplanted RPE, regardless of stem cell resource. Gene regulatory network analysis suggests that tripartite transcription factors (FOS, JUND, and MAFF) may be specifically activated in posttransplanted RPE cells, to regulate canonical RPE signature gene expression crucial for supporting host photoreceptor function, and to regulate prosurvival genes required for transplanted RPE's adaptation to the host subretinal microenvironment. These findings shed insights into the transcriptional landscape of RPE cells after subretinal transplantation, with important implications for cell-based therapy for AMD.


Subject(s)
Macular Degeneration , Transcriptome , Adult , Animals , Humans , Rabbits , Macular Degeneration/genetics , Macular Degeneration/therapy , Stem Cells , Epithelial Cells , Retinal Pigments
7.
Nat Commun ; 13(1): 2796, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589753

ABSTRACT

One common cause of vision loss after retinal detachment surgery is the formation of proliferative and contractile fibrocellular membranes. This aberrant wound healing process is mediated by epithelial-mesenchymal transition (EMT) and hyper-proliferation of retinal pigment epithelial (RPE) cells. Current treatment relies primarily on surgical removal of these membranes. Here, we demonstrate that a bio-functional polymer by itself is able to prevent retinal scarring in an experimental rabbit model of proliferative vitreoretinopathy. This is mediated primarily via clathrin-dependent internalisation of polymeric micelles, downstream suppression of canonical EMT transcription factors, reduction of RPE cell hyper-proliferation and migration. Nuclear factor erythroid 2-related factor 2 signalling pathway was identified in a genome-wide transcriptomic profiling as a key sensor and effector. This study highlights the potential of using synthetic bio-functional polymer to modulate RPE cellular behaviour and offers a potential therapy for retinal scarring prevention.


Subject(s)
NF-E2-Related Factor 2 , Retinal Pigment Epithelium , Animals , Cell Line , Cell Movement , Cicatrix/metabolism , Epithelial-Mesenchymal Transition , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Polymers/metabolism , Rabbits , Retinal Pigment Epithelium/metabolism
8.
J Neuroimmunol ; 367: 577861, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35405429

ABSTRACT

Adenylate kinase 5 (AK5) antibodies are biomarkers of a poorly responsive to immunotherapy, non-paraneoplastic, autoimmune limbic encephalitis. We detected 6 patients (all female, median age: 72 years [49-80]) with identical CSF antibody staining by indirect immunofluorescence on mouse tissues. We identified AK5 as the antigen and confirmed with standardized assays. Three patients with clinical information had limbic encephalitis, inflammatory CSF and mesiotemporal lobe T2 hyperintensities that evolved to atrophy on brain MRI. One patient had burning smell sensation with no evidence of seizures. Despite immunotherapy, minimal improvement was noticed in one patient; all had severe memory deficits remaining.


Subject(s)
Autoimmune Diseases , Limbic Encephalitis , Adenylate Kinase , Animals , Autoantibodies , Encephalitis , Female , Hashimoto Disease , Humans , Magnetic Resonance Imaging , Mice
9.
BMC Biol ; 20(1): 47, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35164755

ABSTRACT

BACKGROUND: Polypoidal choroidal vasculopathy (PCV), a subtype of age-related macular degeneration (AMD), is a global leading cause of vision loss in older populations. Distinct from typical AMD, PCV is characterized by polyp-like dilatation of blood vessels and turbulent blood flow in the choroid of the eye. Gold standard anti-vascular endothelial growth factor (anti-VEGF) therapy often fails to regress polypoidal lesions in patients. Current animal models have also been hampered by their inability to recapitulate such vascular lesions. These underscore the need to identify VEGF-independent pathways in PCV pathogenesis. RESULTS: We cultivated blood outgrowth endothelial cells (BOECs) from PCV patients and normal controls to serve as our experimental disease models. When BOECs were exposed to heterogeneous flow, single-cell transcriptomic analysis revealed that PCV BOECs preferentially adopted migratory-angiogenic cell state, while normal BOECs undertook proinflammatory cell state. PCV BOECs also had a repressed protective response to flow stress by demonstrating lower mitochondrial functions. We uncovered that elevated hyaluronidase-1 in PCV BOECs led to increased degradation of hyaluronan, a major component of glycocalyx that interfaces between flow stress and vascular endothelium. Notably, knockdown of hyaluronidase-1 in PCV BOEC improved mechanosensitivity, as demonstrated by a significant 1.5-fold upregulation of Krüppel-like factor 2 (KLF2) expression, a flow-responsive transcription factor. Activation of KLF2 might in turn modulate PCV BOEC migration. Barrier permeability due to glycocalyx impairment in PCV BOECs was also reversed by hyaluronidase-1 knockdown. Correspondingly, hyaluronidase-1 was detected in PCV patient vitreous humor and plasma samples. CONCLUSIONS: Hyaluronidase-1 inhibition could be a potential therapeutic modality in preserving glycocalyx integrity and endothelial stability in ocular diseases with vascular origin.


Subject(s)
Hyaluronoglucosaminidase , Macular Degeneration , Aged , Choroid/blood supply , Choroid/pathology , Endothelial Cells , Fluorescein Angiography , Glycocalyx/pathology , Humans , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/therapeutic use , Macular Degeneration/drug therapy , Macular Degeneration/pathology
10.
Ann Neurol ; 91(5): 670-675, 2022 05.
Article in English | MEDLINE | ID: mdl-35150165

ABSTRACT

The antigen specificity of Anti-Neuronal Nuclear Antibody-type 3 (ANNA3)-IgG is unknown. We identified Dachshund-homolog 1 (DACH1) as the ANNA3 autoantigen and confirmed it by antigen-specific assays, immunohistochemical colocalization and immune absorption experiments. Patients' median age was 63.5 years (range, 49-88); 67% were female. Neurological manifestations (information available for 30 patients) included one or more of neuropathy, 12; cognitive difficulties, 11; ataxia, 8; dysautonomia, 7. Evidence of a neoplasm was present in 27 of 30 (90%), most of neuroendocrine lineage. DACH1-IgG is rare and represents a novel proposed biomarker of neurological autoimmunity and cancer. ANN NEUROL 2022;91:670-675.


Subject(s)
Autoimmunity , Neoplasms , Animals , Autoantigens , Biomarkers , Dogs , Female , Humans , Immunoglobulin G , Male , Middle Aged
11.
Adv Mater ; 34(25): e2108360, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34726299

ABSTRACT

The traditional intravitreal injection delivery of antivascular endothelial growth factor (anti-VEGF) to the posterior segment of the eye for treatment of retinal diseases is invasive and associated with sight-threatening complications. To avoid such complications, there has been significant interest in developing polymers for topical drug delivery to the retina. This study reports a nanomicelle drug delivery system made of a copolymer EPC (nEPCs), which is capable of delivering aflibercept to the posterior segment topically through corneal-scleral routes. EPC is composed of poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and polycaprolactone (PCL) segments. In this study, aflibercept-loaded nEPCs (nEPCs + A) are capable of penetrating the cornea in ex vivo porcine eye models and deliver a clinically significant amount of aflibercept to the retina in laser-induced choroidal neovascularization (CNV) murine models, causing CNV regression. nEPCs + A also demonstrate biocompatibility in vitro and in vivo. Interestingly, this study also suggests that nEPCs have intrinsic antiangiogenic properties. The ability to deliver anti-VEGF drugs and the intrinsic antiangiogenic properties of nEPCs may result in synergistic effects, which can be harnessed for effective therapeutics. nEPCs may be a promising topical anti-VEGF delivery platform for the treatment of retinal diseases.


Subject(s)
Choroidal Neovascularization , Retinal Diseases , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Animals , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/etiology , Drug Delivery Systems , Mice , Receptors, Vascular Endothelial Growth Factor/therapeutic use , Recombinant Fusion Proteins , Retinal Diseases/complications , Retinal Diseases/drug therapy , Swine , Vascular Endothelial Growth Factor A
12.
Stem Cell Res Ther ; 12(1): 464, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34412697

ABSTRACT

BACKGROUND: Retinal regenerative therapies hold great promise for the treatment of inherited retinal degenerations (IRDs). Studies in preclinical lower mammal models of IRDs have suggested visual improvement following retinal photoreceptor precursors transplantation, but there is limited evidence on the ability of these transplants to rescue retinal damage in higher mammals. The purpose of this study was to evaluate the therapeutic potential of photoreceptor precursors derived from clinically compliant induced pluripotent stem cells (iPSCs). METHODS: Photoreceptor precursors were sub-retinally transplanted into non-human primates (Macaca fascicularis). The cells were transplanted both in naïve and cobalt chloride-induced retinal degeneration models who had been receiving systemic immunosuppression for one week prior to the procedure. Optical coherence tomography, fundus autofluorescence imaging, electroretinography, ex vivo histology and immunofluorescence staining were used to evaluate retinal structure, function and survival of transplanted cells. RESULTS: There were no adverse effects of iPSC-derived photoreceptor precursors on retinal structure or function in naïve NHP models, indicating good biocompatibility. In addition, photoreceptor precursors injected into cobalt chloride-induced retinal degeneration NHP models demonstrated an ability both to survive and to mature into cone photoreceptors at 3 months post-transplant. Optical coherence tomography showed restoration of retinal ellipsoid zone post-transplantation. CONCLUSIONS: These findings demonstrate the safety and therapeutic potential of clinically compliant iPSC-derived photoreceptor precursors as a cell replacement source for future clinical trials.


Subject(s)
Induced Pluripotent Stem Cells , Retinal Degeneration , Animals , Humans , Photoreceptor Cells, Vertebrate , Primates , Retinal Cone Photoreceptor Cells , Retinal Degeneration/therapy
13.
J Am Soc Nephrol ; 32(7): 1630-1648, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33893223

ABSTRACT

BACKGROUND: Fractalkine receptor 1 (CX3CR1) mediates macrophage infiltration and accumulation, causing venous neointimal hyperplasia (VNH)/venous stenosis (VS) in arteriovenous fistula (AVF). The effect of blocking CX3CR1 using an anti-human variable VHH molecule (hCX3CR1 VHH, BI 655088) on VNH/VS was determined using a humanized mouse in which the human CX3CR1 (hCX3CR1) gene was knocked in (KI). METHODS: Whole-transcriptomic RNA sequencing with bioinformatics analysis was used on human stenotic AVF samples, C57BL/6J, hCX3CR1 KI mice with AVF and CKD, and in in vitro experiments to identify the pathways involved in preventing VNH/VS formation after hCX3CR1 VHH administration. RESULTS: Accumulation of CX3CR1 and CD68 was significantly increased in stenotic human AVFs. In C57BL/6J mice with AVF, there was increased Cx3cr1, Cx3cl1, Cd68, and Tnf-α gene expression, and increased immunostaining of CX3CR1 and CD68. In hCX3CR1-KI mice treated with hCX3CR1 VHH molecule (KI-A), compared with vehicle controls (KI-V), there was increased lumen vessel area and patency, and decreased neointima in the AVF outflow veins. RNA-seq analysis identified TNF-α and NF-κB as potential targets of CX3CR1 inhibition. In KI-A-treated vessels compared with KI-V, there was decreased gene expression of Tnf- α, Mcp-1, and Il-1 ß; with reduction of Cx3cl1, NF-κB, and Cd68; decreased M1, Ly6C, smooth muscle cells, fibroblast-activated protein, fibronectin, and proliferation; and increased TUNEL and M2 staining. In cell culture, monocytes stimulated with PMA and treated with hCX3CR1 VHH had decreased TNF- α, CD68, proliferation, and migration. CONCLUSIONS: CX3CR1 blockade reduces VNH/VS formation by decreasing proinflammatory cues.

14.
J Clin Med ; 9(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927780

ABSTRACT

(1) Background: Intravitreal anti-vascular endothelial growth factor (anti-VEGF) is an established treatment for center-involving diabetic macular edema (ci-DME). However, the clinical response is heterogeneous. This study investigated miRNAs as a biomarker to predict treatment response to anti-VEGF in DME. (2) Methods: Tear fluid, aqueous, and blood were collected from patients with treatment-naïve DME for miRNA expression profiling with quantitative polymerase chain reaction. Differentially expressed miRNAs between good and poor responders were identified from tear fluid. Bioinformatics analysis with the miEAA tool, miRTarBase Annotations, Gene Ontology categories, KEGG, and miRWalk pathways identified interactions between enriched miRNAs and biological pathways. (3) Results: Of 24 participants, 28 eyes received bevacizumab (15 eyes) or aflibercept (13 eyes). Tear fluid had the most detectable miRNA species (N = 315), followed by serum (N = 309), then aqueous humor (N = 134). MiRNAs that correlated with change in macular thickness were miR-214-3p, miR-320d, and hsa-miR-874-3p in good responders; and miR-98-5p, miR-196b-5p, and miR-454-3p in poor responders. VEGF-related pathways and the angiogenin-PRI complex were enriched in good responders, while transforming growth factor-ß and insulin-like growth factor pathways were enriched in poor responders. (4) Conclusions: We reported a panel of novel miRNAs that provide insight into biological pathways in DME. Validation in larger independent cohorts is needed to determine the predictive performance of these miRNA candidate biomarkers.

15.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L525-L536, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31411059

ABSTRACT

Hyperoxia exposure in premature infants increases the risk of subsequent lung diseases, such as asthma and bronchopulmonary dysplasia. Fibroblasts help maintain bronchial and alveolar integrity. Thus, understanding mechanisms by which hyperoxia influences fibroblasts is critical. Cellular senescence is increasingly recognized as important to the pathophysiology of multiple diseases. We hypothesized that clinically relevant moderate hyperoxia (<50% O2) induces senescence in developing fibroblasts. Using primary human fetal lung fibroblasts, we investigated effects of 40% O2 on senescence, endoplasmic reticulum (ER) stress, and autophagy pathways. Fibroblasts were exposed to 21% or 40% O2 for 7 days with etoposide as a positive control to induce senescence, evaluated by morphological changes, ß-galactosidase activity, and DNA damage markers. Senescence-associated secretory phenotype (SASP) profile of inflammatory and profibrotic markers was further assessed. Hyperoxia decreased proliferation but increased cell size. SA-ß-gal activity and DNA damage response, cell cycle arrest in G2/M phase, and marked upregulation of phosphorylated p53 and p21 were noted. Reduced autophagy was noted with hyperoxia. mRNA expression of proinflammatory and profibrotic factors (TNF-α, IL-1, IL-8, MMP3) was elevated by hyperoxia or etoposide. Hyperoxia increased several SASP factors (PAI-1, IL1-α, IL1-ß, IL-6, LAP, TNF-α). The secretome of senescent fibroblasts promoted extracellular matrix formation by naïve fibroblasts. Overall, we demonstrate that moderate hyperoxia enhances senescence in primary human fetal lung fibroblasts with reduced autophagy but not enhanced ER stress. The resulting SASP is profibrotic and may contribute to abnormal repair in the lung following hyperoxia.


Subject(s)
Cellular Senescence/drug effects , Fibroblasts/drug effects , G2 Phase Cell Cycle Checkpoints/drug effects , Gene Expression Regulation/drug effects , Hyperoxia/genetics , Oxygen/pharmacology , Autophagy/drug effects , Autophagy/genetics , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Proliferation/drug effects , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Endoplasmic Reticulum Stress/drug effects , Etoposide/pharmacology , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Fetus , Fibroblasts/cytology , Fibroblasts/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , Humans , Hyperoxia/metabolism , Interleukin-1/genetics , Interleukin-1/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Lung/cytology , Lung/metabolism , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Primary Cell Culture , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
16.
Am J Physiol Lung Cell Mol Physiol ; 317(1): L99-L108, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31042080

ABSTRACT

Reactive airway diseases are significant sources of pulmonary morbidity in neonatal and pediatric patients. Supplemental oxygen exposure in premature infants contributes to airway diseases such as asthma and promotes development of airway remodeling, characterized by increased airway smooth muscle (ASM) mass and extracellular matrix (ECM) deposition. Decreased plasma membrane caveolin-1 (CAV1) expression has been implicated in airway disease and may contribute to airway remodeling and hyperreactivity. Here, we investigated the impact of clinically relevant moderate hyperoxia (50% O2) on airway remodeling and caveolar protein expression in a neonatal mouse model. Within 12 h of birth, litters of B6129SF2J mice were randomized to room air (RA) or 50% hyperoxia exposure for 7 days with or without caveolin-1 scaffolding domain peptide (CSD; caveolin-1 mimic; 10 µl, 0.25 mM daily via intraperitoneal injection) followed by 14 days of recovery in normoxia. Moderate hyperoxia significantly increased airway reactivity and decreased pulmonary compliance at 3 wk. Histologic assessment demonstrated airway wall thickening and increased ASM mass following hyperoxia. RNA from isolated ASM demonstrated significant decreases in CAV1 and cavin-1 in hyperoxia-exposed animals while cavin-3 was increased. Supplementation with intraperitoneal CSD mitigated both the physiologic and histologic changes observed with hyperoxia. Overall, these data show that moderate hyperoxia is detrimental to developing airway and may predispose to airway reactivity and remodeling. Loss of CAV1 is one mechanism through which hyperoxia produces these deleterious effects. Supplementation of CAV1 using CSD or similar analogs may represent a new therapeutic avenue for blunting hyperoxia-induced pulmonary damage in neonates.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Bronchial Hyperreactivity/drug therapy , Caveolin 1/pharmacology , Hyperoxia/drug therapy , Lung/drug effects , Peptide Fragments/pharmacology , Airway Remodeling/drug effects , Airway Remodeling/immunology , Animals , Animals, Newborn , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/genetics , Bronchial Hyperreactivity/immunology , Bronchoconstrictor Agents/pharmacology , Caveolin 1/genetics , Caveolin 1/immunology , Disease Models, Animal , Female , Gene Expression Regulation , Humans , Hyperoxia/etiology , Hyperoxia/genetics , Hyperoxia/immunology , Injections, Intraperitoneal , Lung/immunology , Lung/pathology , Male , Membrane Proteins/genetics , Membrane Proteins/immunology , Methacholine Chloride/pharmacology , Mice , Oxygen/adverse effects , RNA-Binding Proteins/genetics , RNA-Binding Proteins/immunology , Signal Transduction
17.
J Vasc Interv Radiol ; 30(9): 1512-1521.e3, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30902494

ABSTRACT

PURPOSE: To develop a clinically relevant model of percutaneous transluminal angioplasty (PTA) of venous stenosis in mice with arteriovenous fistula (AVF); to test the hypothesis that there is increased wall shear stress (WSS) after PTA; and to histologically characterize the vessels. MATERIALS AND METHODS: Thirteen C57BL/6J male mice, 6-8 weeks old, underwent partial nephrectomy to create chronic kidney disease. Twenty-eight days later, an AVF was created from the right external jugular vein to the left carotid artery. Fourteen days later, an angioplasty or sham procedure was performed, and the mice were sacrificed 14 days later for histologic evaluation to identify the cells contributing to the vascular remodeling (α-SMA, FSP-1, CD31, and CD68), proliferation (Ki-67), cell death (TUNEL), and hypoxia staining (HIF-1α). Histomorphometric analysis was performed to assess lumen area, neointima+media area, and cellular density. Ultrasound was performed weekly after creation of the AVF. RESULTS: Venous stenosis occurred 14 days after the creation of an AVF. PTA-treated vessels had significantly higher WSS; average peak systolic velocity, with increased lumen vessel area; and decreased neointima + media area compared to sham controls. There was a significant decrease in the staining of smooth muscle cells, fibroblasts, macrophages, HIF-1α, proliferation, and apoptosis and an increase in CD31-(+) cells. CONCLUSIONS: A clinically relevant model of PTA of venous stenosis in mice was created. PTA-treated vessels had increased lumen vessel area and WSS. The alterations in tissue markers of vascular remodeling, tissue hypoxia, proliferation, and cell death may be implications for future design of drug and device development.


Subject(s)
Angioplasty , Arteriovenous Shunt, Surgical/adverse effects , Graft Occlusion, Vascular/therapy , Jugular Veins/surgery , Renal Insufficiency, Chronic/therapy , Animals , Biomarkers/metabolism , Carotid Arteries/surgery , Cell Proliferation , Disease Models, Animal , Graft Occlusion, Vascular/diagnostic imaging , Graft Occlusion, Vascular/metabolism , Graft Occlusion, Vascular/pathology , Jugular Veins/diagnostic imaging , Jugular Veins/metabolism , Jugular Veins/pathology , Male , Mice, Inbred C57BL , Neointima , Time Factors , Vascular Remodeling
18.
Sci Rep ; 8(1): 6630, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29700311

ABSTRACT

We tested the hypothesis that post-contrast acute kidney injury (PC-AKI) occurs due to increase in transforming growth factor beta (Tgf-ß) and pSMAD3 signaling in a murine model of PC-AKI. Mice had nephrectomy performed and twenty-eight days later, 100-µL of radio-contrast (Vispaque 320) or saline was administered via the jugular vein. Animals were sacrificed at 2, 7, and 28 days later and the serum BUN, creatinine, urine protein levels, and kidney weights were assessed. In human kidney-2 (HK-2) cells, gene and protein expression with cellular function was assessed following inhibition of TGFßR-1 plus contrast exposure. After contrast administration, the average serum creatinine is significantly elevated at all time points. The average gene expression of connective tissue growth factor (Ctgf), Tgfß-1, matrix metalloproteinase-9 (Mmp-9), and collagen IVa (Col IVa) are significantly increased at 2 days after contrast administration (P < 0.05). Cellular proliferation is decreased and there is increased apoptosis with tubulointerstitial fibrosis. Contrast administered to HK-2 cells results in increased pSMAD3 levels and gene expression of Ctgf, Tgfß-1, Tgfß-2, Col IVa, Mmp-9, and caspase/7 activity with a decrease in proliferation (all, P < 0.05). TGFßR-1 inhibition decreased the expression of contrast mediated pro-fibrotic genes in HK-2 cells with no change in the proliferation and apoptosis.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Contrast Media/adverse effects , Signal Transduction , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/drug effects , Biomarkers , Biopsy , Cell Line , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Mice , Smad3 Protein/genetics , Transforming Growth Factor beta/genetics
20.
Sci Rep ; 7(1): 14298, 2017 10 30.
Article in English | MEDLINE | ID: mdl-29085001

ABSTRACT

Venous neointimal hyperplasia (VNH) at the outflow vein of hemodialysis AVF is a major factor contributing to failure. CorMatrix is an extracellular matrix that has been used in cardiovascular procedures primarily as scaffolding during surgery. In the present study, we sought to determine whether CorMatrix wrapped around the outflow vein of arteriovenous fistula (AVF) at the time of creation could reduce VNH. In mice, the carotid artery to the ipsilateral jugular vein was connected to create an AVF, and CorMatrix scaffold was wrapped around the outflow vein compared to control mice that received no scaffolding. Immunohistochemistry, Western blot, and qRT-PCR were performed on the outflow vein at 7 and 21 days after AVF creation. In outflow veins treated with CorMatrix, there was an increase in the mean lumen vessel area with a decrease in the ratio of neointima area/media + adventitia area (P < 0.05). Furthermore, there was a significant increase in apoptosis, with a reduction in cell density and proliferation in the outflow veins treated with CorMatrix compared to controls (P < 0.05). Immunohistochemical analysis revealed a significant reduction in fibroblasts, myofibroblasts, macrophages, and leukocytes with a reduction in Tnf-α gene expression (P < 0.05). In conclusion, outflow veins treated with CorMatrix have reduced VNH.


Subject(s)
Adventitia/pathology , Arteriovenous Fistula/pathology , Arteriovenous Fistula/prevention & control , Hyperplasia/prevention & control , Renal Dialysis/adverse effects , Tissue Scaffolds , Animals , Apoptosis/physiology , Carotid Arteries/surgery , Cell Proliferation/physiology , Extracellular Matrix/physiology , Fibroblasts/cytology , Jugular Veins/surgery , Leukocytes/cytology , Macrophages/cytology , Mice , Mice, Transgenic , Models, Animal , Myofibroblasts/cytology , Renal Insufficiency, Chronic/therapy , Tumor Necrosis Factor-alpha/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...