Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
2.
Hum Genet ; 143(3): 371-383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38499885

ABSTRACT

Massively parallel sequencing (MPS) has emerged as a promising technology for targeting multiple genetic loci simultaneously in forensic genetics. Here, a novel 193-plex panel was designed to target 28 A-STRs, 41 Y-STRs, 21 X-STRs, 3 sex-identified loci, and 100 A-SNPs by employing a single-end 400 bp sequencing strategy on the MGISEQ-2000™ platform. In the present study, a series of validations and sequencing of 1642 population samples were performed to evaluate the overall performance of the MPS-based panel and its practicality in forensic application according to the SWGDAM guidelines. In general, the 193-plex markers in our panel showed good performance in terms of species specificity, stability, and repeatability. Compared to commercial kits, this panel achieved 100% concordance for standard gDNA and 99.87% concordance for 14,560 population genotypes. Moreover, this panel detected 100% of the loci from 0.5 ng of DNA template and all unique alleles at a 1:4 DNA mixture ratio (0.2 ng minor contributor), and the applicability of the proposed approach for tracing and degrading DNA was further supported by case samples. In addition, several forensic parameters of STRs and SNPs were calculated in a population study. High CPE and CPD values greater than 0.9999999 were clearly demonstrated and these results could be useful references for the application of this panel in individual identification and paternity testing. Overall, this 193-plex MPS panel has been shown to be a reliable, repeatable, robust, inexpensive, and powerful tool sufficient for forensic practice.


Subject(s)
Forensic Genetics , High-Throughput Nucleotide Sequencing , Microsatellite Repeats , Paternity , Polymorphism, Single Nucleotide , Humans , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Forensic Genetics/methods , Male , Female , Genotype , Alleles , Genetics, Population/methods
3.
BMC Cancer ; 24(1): 321, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38454345

ABSTRACT

BACKGROUND: Definitive concurrent chemoradiotherapy (dCCRT) is the gold standard for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC). However, the potential benefits of consolidation chemotherapy after dCCRT in patients with esophageal cancer remain debatable. Prospective randomized controlled trials comparing the outcomes of dCCRT with or without consolidation chemotherapy in patients with ESCC are lacking. In this study, we aim to generate evidence regarding consolidation chemotherapy efficacy in patients with locally advanced, inoperable ESCC. METHODS: This is a multicenter, prospective, open-label, phase-III randomized controlled trial comparing non-inferiority of dCCRT alone to consolidation chemotherapy following dCCRT. In total, 600 patients will be enrolled and randomly assigned in a 1:1 ratio to receive either consolidation chemotherapy after dCCRT (Arm A) or dCCRT alone (Arm B). Overall survival will be the primary endpoint, whereas progression-free survival, locoregional progression-free survival, distant metastasis-free survival, and treatment-related toxicity will be the secondary endpoints. DISCUSSION: This study aid in further understanding the effects of consolidation chemotherapy after dCCRT in patients with locally advanced, inoperable ESCC. TRIAL REGISTRATION: ChiCTR1800017646.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Chemoradiotherapy , Consolidation Chemotherapy , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/radiotherapy , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/pathology , Prospective Studies , Randomized Controlled Trials as Topic , Multicenter Studies as Topic , Clinical Trials, Phase III as Topic , Equivalence Trials as Topic
5.
Immunotherapy ; 16(4): 223-234, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38126156

ABSTRACT

Aims: Programmed death-1 (PD-1) blockade is a vital therapy for solid tumors, but not all patients benefit. Identifying which patients will benefit from immunotherapy is a key focus in oncology research. Patients & Methods: This study analyzed the correlation between the number of peripheral lymphocytes and the efficacy and prognosis of immunotherapy in advanced malignant melanoma. Results: Patients with a partial response had significantly lower peripheral B cell levels, and patients with a lower number of B lymphocytes had a longer survival time. Conclusion: These results suggest that peripheral B cells are correlated with the efficacy of PD-1 antibody and prognosis and are thus potential biomarkers for the efficacy and prognosis of PD-1 antibody immunotherapy in malignant melanoma.


Immunotherapy is an important treatment for cancer patients with solid tumors. Because immunotherapy does not work equally well for everybody, an important area of research is to determine for which patients the treatment will work. Our study focused on skin cancer patients. We examined the relationship between the number of B cells (a type of immune cell) in patients' blood, and how well they responded to immunotherapy. We observed that patients who partially responded to treatment had lower levels of B cells. Additionally, patients who had a lower number of B cells also had a longer survival time. This could mean that looking at patients' B cell levels might be useful in working out how well they well respond to immunotherapy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Programmed Cell Death 1 Receptor , Skin Neoplasms/pathology , Immunotherapy/methods , B-Lymphocytes/pathology
6.
Opt Express ; 31(25): 41292-41300, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087531

ABSTRACT

What we believe to be a novel integrated circular polarization dynamic converter (CPDC) is proposed based on the four-layer mirror symmetry structure. By designing the twisted structure and rearranging the orientation direction of liquid crystal molecules for each layer, the application wavelength range could be broadened. For the viewing angle expansion, negative birefringent films are selected to compensate for the retardation deviation under oblique incidence. Finally, the particle swarm algorithm is used to optimize the whole configuration, and the polarization conversion efficiency calculated by the finite element method (FEM) can achieve 90% in the wavelength range from 320 nm to 800 nm at an ultrawide view of 160°. Compared with traditionally active liquid crystal waveplates, the design has potential advantages in both wavelength and field of view (FOV) and provides the possibility for the integrated and flimsy fabrication of devices.

7.
Fa Yi Xue Za Zhi ; 39(4): 373-381, 2023 Aug 25.
Article in English, Chinese | MEDLINE | ID: mdl-37859476

ABSTRACT

OBJECTIVES: To explore the potential biomarkers for the diagnosis of primary brain stem injury (PBSI) by using metabonomics method to observe the changes of metabolites in rats with PBSI caused death. METHODS: PBSI, non-brain stem brain injury and decapitation rat models were established, and metabolic maps of brain stem were obtained by LC-MS metabonomics method and annotated to the HMDB database. Partial least square-discriminant analysis (PLS-DA) and random forest methods were used to screen potential biomarkers associated with PBSI diagnosis. RESULTS: Eighty-six potential metabolic markers associated with PBSI were screened by PLS-DA. They were modeled and predicted by random forest algorithm with an accuracy rate of 83.3%. The 818 metabolic markers annotated to HMDB database were used for random forest modeling and prediction, and the accuracy rate was 88.9%. According to the importance in the identification of cause of death, the most important metabolic markers that were significantly up-regulated in PBSI group were HMDB0038126 (genipinic acid, GA), HMDB0013272 (N-lauroylglycine), HMDB0005199 [(R)-salsolinol] and HMDB0013645 (N,N-dimethylsphingosine). CONCLUSIONS: GA, N-lauroylglycine, (R)-salsolinol and N,N-dimethylsphingosine are expected to be important metabolite indicators in the diagnosis of PBSI caused death, thus providing clues for forensic medicine practice.


Subject(s)
Brain Injuries , Metabolomics , Rats , Animals , Metabolomics/methods , Biomarkers/metabolism , Brain Stem/metabolism
8.
Int Immunopharmacol ; 124(Pt B): 110948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774483

ABSTRACT

OBJECTIVE: We aimed to explore the effect and mechanism of the Src inhibitor PP2 on osteoarthritis (OA) progression. METHODS: The protein expressions of Src, p-Src (y418) and p-FAK in normal and OA human chondrocytes were detected by immunofluorescence (IF) analysis. Chondrocytes from the femur and tibial plateau of 3-day-old mice were extracted and inoculated into 6-well plates. The chondrocytes were co-cultured with IL-1ß and different doses of PP2, and then the degeneration of extracellular matrix was analyzed. A mouse OA model was induced by destabilizing medial meniscectomy of the right knee. Two weeks after the operation, different doses of PP2 were injected intraperitoneally. The drug was given three times a week for 6 weeks, and then the mice were sacrificed. Histopathological, IF and immunoblotting analyses were used to detect key OA catabolic markers and protein expression and related signaling. RESULTS: The levels of Src, p-Src (y418) and p-FAK in the knee cartilage tissue of patients with OA were abnormally increased. After chondrocytes were co-treated with IL-1ß and different doses of PP2, the results showed that PP2 reduced the abnormal increase of ß-catenin, p-ß-catenin and other proteins induced by IL-1ß, and reversed the decrease of p-Smad3, aggrecan and collagen Ⅱ protein levels. Meanwhile, intraperitoneal injection of PP2 in vivo significantly reduced the degeneration of articular cartilage in the OA mouse model. CONCLUSION: Our data indicate that targeting Src with PP2 protected against cartilage destruction in an OA mouse model by inhibiting Wnt/ß-catenin and activating TGF-ß/Smad signaling, suggesting that Src may be a potential therapeutic target for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Mice , Animals , beta Catenin/metabolism , Wnt Signaling Pathway , Osteoarthritis/metabolism , Chondrocytes , Cartilage, Articular/pathology , Disease Models, Animal , Transforming Growth Factor beta/metabolism , Cells, Cultured
9.
Lancet ; 402(10408): 1129-1130, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777327
10.
Electrophoresis ; 44(21-22): 1704-1713, 2023 11.
Article in English | MEDLINE | ID: mdl-37622566

ABSTRACT

Insertion/deletion polymorphisms (InDels) have particular characteristics, such as a relatively low mutation rate, small amplicon size, and no stutter artifacts when genotyped via the capillary electrophoresis platform. It would be an important complementary tool for individual identification and certain kinship analyses. At present, massively parallel sequencing (MPS) has shown excellent application value in forensic studies. Therefore, in this study, we developed a custom MPS InDel panel that contains 114 InDels [77 autosomal InDels (A-InDels), 32 X-chromosomal InDels (X-InDels), and 5 Y-chromosomal InDels) based on previous studies. To assess this panel's performance, several validation experiments were performed, including sensitivity, inhibitor, degraded DNA testing, species specificity, concordance, repeatability, case-type samples, and population studies. The results showed that the lowest DNA input was 0.25 ng. All genotypes were obtained in the presence of 80 ng/µL humic acid, 2000 µmol/L calcium, 3000 µmol/L EDTA and indigo. In degraded DNA testing, 90% of loci could be detected for 16-day-old formalin-fixed hearts. In addition, this panel has good species specificity. The values of combined power of discrimination and the combined power of exclusion for 77 A-InDels were 1-3.9951 × 10-32 and 1-4.2956 × 10-7 , respectively. The combined mean exclusion chance for 32 X-InDels was 0.99999 in trios and 0.99904 in duos. The validation results indicate that this newly developed MPS multiplex system is a robust tool for forensic applications.


Subject(s)
Forensic Genetics , Polymorphism, Genetic , Humans , Genotype , Forensic Genetics/methods , DNA Fingerprinting , DNA/analysis , INDEL Mutation , High-Throughput Nucleotide Sequencing , Polymorphism, Single Nucleotide , Genetics, Population
12.
Front Microbiol ; 14: 1213271, 2023.
Article in English | MEDLINE | ID: mdl-37440892

ABSTRACT

Diagnosing the drowning site is a major challenge in forensic practice, particularly when corpses are recovered from flowing rivers. Recently, forensic experts have focused on aquatic microorganisms, including bacteria, which can enter the bloodstream during drowning and may proliferate in corpses. The emergence of 16S ribosomal RNA gene (16S rDNA) amplicon sequencing has provided a new method for analyzing bacterial composition and has facilitated the development of forensic microbiology. We propose that 16S rDNA amplicon sequencing could be a useful tool for inferring drowning sites. Our study found significant differences in bacterial composition in different regions of the Guangzhou section of the Pearl River, which led to differences in bacteria of drowned rabbit lungs at different drowning sites. Using the genus level of bacteria in the lung tissue of drowned rabbits, we constructed a random forest model that accurately predicted the drowning site in a test set with 100% accuracy. Furthermore, we discovered that bacterial species endemic to the water were not always present in the corresponding drowned lung tissue. Our findings demonstrate the potential of a random forest model based on bacterial genus and composition in drowned lung tissues for inferring drowning sites.

13.
Opt Express ; 31(15): 24678-24690, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37475288

ABSTRACT

This paper proposes an extended prism coupling analysis method to accurately analyze the coupling structure of liquid crystal (LC) cladding waveguide beam steerer. We analyze the effects of LC anisotropy on the coupling of transverse electric (TE) and transverse magnetic (TM) modes and derive the expression of the optical field distribution that perfectly matches the given coupling structure. Based on this method, we present the optimal coupling structure for Gaussian beam. Taking into account the practical manufacturing process, we propose a simplified coupling structure and perform a detailed analysis of its performance based on numerical simulations. Experimental results show a coupling efficiency of 91% and a coupling angle full width at half maximum (FWHM) of about ±0.02°, demonstrating the effectiveness of the proposed method in predicting the coupling performance of anisotropic cladding waveguides.

14.
Int J Bioprint ; 9(3): 692, 2023.
Article in English | MEDLINE | ID: mdl-37273987

ABSTRACT

Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat SCI. However, each of these strategies fails to obtain desirable outcomes due to their respective limitations. In comparison, advanced tissue engineering scaffolds with appropriate topographical features, favorable composition, and sustained drug delivery capability can be employed to recruit endogenous neural stem cells (NSCs), induce neuronal differentiation, and facilitate neuron maturation. This can lead to the regeneration of injured spinal cord tissue and the recovery of motor function. In this study, fiber bundle-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with oxymatrine (OMT) were produced through nearfield direct write electrospinning. The spinal cord extracellular matrix-based hydrogel was then coated with OMT. The physical/chemical properties and in vitro degradation behavior of the composite scaffolds were investigated. The in vitro cell culture results showed that composite scaffolds loaded with OMT promoted the differentiation of NSCs into neurons and inhibited differentiation into astrocytes. The in vivo results showed that the composite scaffolds loaded with OMT recruited NSCs from the host tissue, promoted neuronal differentiation and axon extension at the lesion site, inhibited glial scar formation at/around the lesion site, and improved the recovery of motor function in rats with SCI. To sum up, 3D-printed microfiber-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with OMT are promising biomaterials for the treatment of SCI.

17.
EBioMedicine ; 91: 104552, 2023 May.
Article in English | MEDLINE | ID: mdl-37037165

ABSTRACT

BACKGROUND: Long-COVID (LC) encompasses diverse symptoms lasting months after the initial SARS-CoV-2 infection. Symptoms can be debilitating and affect the quality of life of individuals with LC and their families. Although the symptoms of LC are well described, the aetiology of LC remains unclear, and consequently, patients may be underdiagnosed. Identification of LC specific biomarkers is therefore paramount for the diagnosis and clinical management of the syndrome. This scoping review describes the molecular and cellular biomarkers that have been identified to date with potential use for diagnosis or prediction of LC. METHODS: This review was conducted using the Joanna Briggs Institute (JBI) Methodology for Scoping Reviews. A search was executed in the MEDLINE and EMBASE databases, as well as in the grey literature for original studies, published until October 5th, 2022, reporting biomarkers identified in participants with LC symptoms (from all ages, ethnicities, and sex), with a previous infection of SARS-CoV-2. Non-English studies, cross-sectional studies, studies without a control group, and pre-prints were excluded. Two reviewers independently evaluated the studies, extracted population data and associated biomarkers. FINDINGS: 23 cohort studies were identified, involving 2163 LC patients [median age 51.8 years, predominantly female sex (61.10%), white (75%), and non-vaccinated (99%)]. A total of 239 candidate biomarkers were identified, consisting mainly of immune cells, immunoglobulins, cytokines, and other plasma proteins. 19 of the 239 candidate biomarkers identified were evaluated by the authors, by means of receiver operating characteristic (ROC) curves. INTERPRETATION: Diverse cellular and molecular biomarkers for LC have been proposed. Validation of candidate biomarkers in independent samples should be prioritized. Modest reported performance (particularly in larger studies) suggests LC may encompass many distinct aetiologies, which should be explored e.g., by stratifying by symptom clusters and/or sex. FUNDING: Dr. Tebbutt has received funding from the Canadian Institutes of Health Research (177747) to conduct this work. The funding source was not involved in this scoping review, or in the decision to submit this manuscript for publication.


Subject(s)
COVID-19 , Humans , Female , Middle Aged , Male , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Quality of Life , Canada , Biomarkers
18.
Int J Bioprint ; 9(1): 644, 2023.
Article in English | MEDLINE | ID: mdl-36844241

ABSTRACT

299Bioprinting offers a new approach to addressing the organ shortage crisis. Despite recent technological advances, insufficient printing resolution continues to be one of the reasons that impede the development of bioprinting. Normally, machine axes movement cannot be reliably used to predict material placement, and the printing path tends to deviate from the predetermined designed reference trajectory in varying degrees. Therefore, a computer vision-based method was proposed in this study to correct trajectory deviation and improve printing accuracy. The image algorithm calculated the deviation between the printed trajectory and the reference trajectory to generate an error vector. Furthermore, the axes trajectory was modified according to the normal vector approach in the second printing to compensate for the deviation error. The highest correction efficiency that could be achieved was 91%. More significantly, we discovered that the correction results, for the first time, were in a normal distribution instead of a random distribution.

20.
Opt Express ; 31(4): 6615-6622, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36823913

ABSTRACT

A high-speed circular polarization converter (CPC) with a wide field of view (FOV) and wavelength range is designed and fabricated in this paper. The multi-waveplate combined structure is applied to constitute the basic configuration of the CPC for broadening the wavelength range. An electrically suppressed helix ferroelectric liquid crystal (ESHFLC) material with fast response is used as a medium for dynamic polarization operation. The compensation films are used to expand the FOV by attaching to the configuration. The simulation results demonstrate that the optimized CPC structure can achieve over 97% orthogonal circular polarization conversion efficiency in 300 nm bandwidth at a 90° viewing cone for both working states. Finally, we have experiments and the results show well consistency with the theoretical results.

SELECTION OF CITATIONS
SEARCH DETAIL
...