Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
J Agric Food Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949485

ABSTRACT

Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.

2.
ACS Appl Mater Interfaces ; 16(26): 33396-33403, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961570

ABSTRACT

Germanium has been recognized as a promising anode material for lithium-ion batteries (LIBs) due to its high theoretical capacity and excellent lithium-ion diffusivity. Nonetheless, it is challenging to enhance both the high-rate performance and long-term cycling stability simultaneously. This study introduces a novel heterostructure composed of germanium nanosheets integrated with graphene (Ge NSs@Gr). These nanosheets undergo an in situ phase transformation from a hydrogen-terminated multilayer germanium compound termed germanane (GeH) derived via topochemical deintercalation from CaGe2. This approach mitigates oxidation and prevents restacking by functionalizing the exfoliated germanane with octadecenoic organic molecules. The resultant germanium nanosheets retain their structural integrity from CaGe2 and present an exposed, active (111) surface that features an open crystal lattice, facilitating swift lithium-ion migration conducive to lithium storage. The composite material delivers a substantial reversible capacity of 1220 mA h g-1 at a current density of 0.2 C and maintains a capacity of 456 mA h g-1 even at an ultrahigh current density of 10 C over extended cycling. Impressively, a capacity of 316 mA h g-1 remains after 5000 cycles. The exceptional high-rate performance and durable cycling stability underscore the Ge NSs@Gr anode's potential as a highly viable option for LIBs.

4.
Ecotoxicol Environ Saf ; 280: 116531, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38852465

ABSTRACT

BACKGROUND: Depression in late life has been associated with reduced quality of life and increased mortality. Whether the chronic fine particular matter (PM2.5) and its components exposure are contributed to the older depression symptoms remains unclear. METHOD: Middle-aged and older adults (>45 years) were selected from the China Health and Retirement Longitudinal Study during the four waves of interviews. The concentrations of PM2.5 and its major constituents were calculated using near real-time data at a spatial resolution of 10 km during the study period. The depressive symptom was evaluated by the Depression Center for Epidemiologic Studies Depression (CES-D)-10 score. The fix-effect model was applied to evaluate the association between PM2.5 and its major constituents with depressive symptoms. Three three-step methods were used to explore the modification role of sleep duration against the depressive symptoms caused by PM2.5 exposure. RESULTS: In our study, a total of 52,683 observations of 16,681 middle-aged and older adults were assessed. Each interquartile range (IQR) level of PM2.5 concentration exposure was longitudinally associated with a 2.6 % (95 % confidence interval [CI]: 1.3 %, 4.0 %) increase in the depression CES-D-10 score. Regarding the major components of PM2.5, OM, NO3-, and NH4+ showed the leading toxicity effects, which could increase the depression CES-D-10 score by 2.2 % (95 %CI: 1.0 %, 3.4 %), 2.2 % (0.6 %, 3.9 %), and 2.0 % (95 %CI: 0.6 %, 3.4 %) correspondingly. Besides, males were more susceptible to the worse depressive symptoms caused by PM2.5 and its major components exposure than female subpopulations. Shortened sleep duration might be the mediator of PM2.5-associated depressive symptoms. CONCLUSION: Our results suggest that long-term exposure to PM2.5 and its major components were associated with an increased risk for depressive symptoms in middle-aged and older adults. Reducing the leading components of PM2.5 may cost-effectively alleviate the disease burden of depression and promote healthy longevity in heavy pollutant countries.


Subject(s)
Air Pollutants , Depression , Environmental Exposure , Particulate Matter , Humans , Particulate Matter/analysis , Male , Middle Aged , Female , Depression/epidemiology , Depression/psychology , Aged , China/epidemiology , Air Pollutants/analysis , Longitudinal Studies , Environmental Exposure/statistics & numerical data , Cohort Studies , Air Pollution/adverse effects , Air Pollution/statistics & numerical data
5.
Small Methods ; : e2400261, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837641

ABSTRACT

The advantages of small extracellular vesicles (sEV) in disease management have become increasingly prominent, with the main challenge lying in meeting the demands of large-scale extraction and high-throughput analysis, a crucial aspect in the realm of precision medicine. To overcome this challenge, an engineered on-plate aptamer array (16×24 spots) is developed for continuous scale-up microextraction of plasma sEV and their in situ metabolic analysis using mass spectrometry. With this integrated array strategy, metabolic profiles of sEV are acquired from the plasma of 274 antenatal or postpartum women, reducing analysis time by half (7.5 h) and sample volume by 95% (only 0.125 µL usage) compared to the traditional suspension method. Moreover, using machine learning algorithms on sEV metabolic profiles, a risk score system is constructed that accurately assesses the need for epidural analgesia during childbirth and the likelihood of post-administration fever. The system, based on admission samples, achieves an impressive 94% accuracy. Furthermore, post-administration fever can be identified from delivery samples, reaching an overall accuracy rate of 88%. This work offers real-time monitoring of the childbirth process that can provide timely guidance for maternal delivery, underscoring the significance of sEV detection in large-scale clinical samples for medicine innovation and advancement.

6.
Parasit Vectors ; 17(1): 256, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867315

ABSTRACT

BACKGROUND: Human toxocariasis is a neglected parasitic disease characterised by the syndromes visceral, cerebral, and ocular larva migrans. This disease is caused by the migrating larvae of Toxocara roundworms from dogs and cats, affecting 1.4 billion people globally. Via extracellular vesicles (EVs), microRNAs have been demonstrated to play roles in host-parasite interactions and proposed as circulating biomarkers for the diagnosis and follow-up of parasitic diseases. METHODS: Small RNA-seq was conducted to identify miRNAs in the infective larvae of T. canis and plasma EV-containing preparations of infected BALB/c mice. Differential expression analysis and target prediction were performed to indicate miRNAs involved in host-parasite interactions and miRNAs associated with visceral and/or cerebral larva migrans in the infected mice. Quantitative real-time polymerase chain reaction (PCR) was used to amplify circulating miRNAs from the infected mice. RESULTS: This study reports host and parasite miRNAs in the plasma of BALB/c mice with visceral and cerebral larva migrans and demonstrates the alterations of these miRNAs during the migration of larvae from the livers through the lungs and to the brains of infected mice. After filtering unspecific changes in an irrelevant control, T. canis-derived miRNAs and T. canis infection-induced differential miRNAs are predicted to modulate genes consistently involved in mitogen-activated protein kinase (MAPK) signalling and pathways regulating axon guidance and pluripotency of stem in the infected mice with visceral and cerebral larva migrans. For these plasma circulating miRNAs predicted to be involved in host-parasite crosstalk, two murine miRNAs (miR-26b-5p and miR-122-5p) are experimentally verified to be responsive to larva migrans and represent circulating biomarker candidates for visceral and cerebral toxocariasis in BALB/c mice. CONCLUSIONS: Our findings provide novel insights into the crosstalk of T. canis and the mammalian host via plasma circulating miRNAs, and prime agents and indicators for visceral and cerebral larva migrans. A deep understanding of these aspects will underpin the diagnosis and control of toxocariasis in humans and animals.


Subject(s)
Circulating MicroRNA , Mice, Inbred BALB C , Toxocara canis , Toxocariasis , Animals , Toxocara canis/genetics , Toxocara canis/physiology , Mice , Toxocariasis/parasitology , Toxocariasis/blood , Circulating MicroRNA/blood , Circulating MicroRNA/genetics , Host-Parasite Interactions , Larva Migrans, Visceral/parasitology , Larva Migrans, Visceral/blood , Female , Larva Migrans/parasitology , Larva Migrans/blood , Larva/genetics , Dogs , MicroRNAs/blood , MicroRNAs/genetics , Biomarkers/blood , Brain/parasitology
7.
Pediatr Surg Int ; 40(1): 129, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727920

ABSTRACT

BACKGROUND: Choledochal cyst with perforation (CC with perforation) rarely occurs, early diagnosis and timely treatment plan are crucial for the treatment of CC with perforation. This study aims to forecast the occurrence of CC with perforation. METHODS: All 1111 patients were conducted, who underwent surgery for choledochal cyst at our hospital from January 2011 to October 2022. We conducted univariate and multivariate logistic regression analysis to screen for independent predictive factors for predicting CC with perforation, upon which established a nomogram. The predictive performance of the nomogram was evaluated using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA) curves. RESULTS: The age of children with choledochal cyst perforation is mainly concentrated between 1 and 3 years old. Logistic regression analysis indicates that age, alanine aminotransferase, glutamyl transpeptidase, C-reactive protein, vomiting, jaundice, abdominal distension, and diarrhea are associated with predicting the occurrence of choledochal cyst perforation. ROC curves, calibration plots, and DCA curve analysis curves demonstrate that the nomogram has great discriminative ability and calibration, as well as significant clinical utility. CONCLUSION: The age of CC with perforation is mainly concentrated between 1 and 3 years old. A nomogram for predicting the perforation of choledochal cyst was established.


Subject(s)
Choledochal Cyst , Nomograms , Humans , Choledochal Cyst/surgery , Choledochal Cyst/complications , Choledochal Cyst/diagnosis , Child, Preschool , Male , Female , Infant , Child , Retrospective Studies , ROC Curve
8.
Front Oncol ; 14: 1395233, 2024.
Article in English | MEDLINE | ID: mdl-38800397

ABSTRACT

Background: Alveolar Rhabdomyosarcoma is a profoundly malignant soft-tissue sarcoma that predominantly affects children and adolescents. However, the medical field lacks consensus regarding the optimal surgical approach to be undertaken in cases where this tumor causes local bone destruction in the upper limb. Case description: A 17-year-old male presented a mass in his left forearm and CT and MRI indicated that the mass had penetrated the ulnar cortex and infiltrating the medulla, resulting in the formation of an eccentric trans-ventricular tumor focus. The sizable tumor affected the volar muscles of the forearm as well as the ulnar bone marrow, exerting pressure on the ulnar artery and vein. It was confirmed by needle biopsy that the mass is alveolar rhabdomyosarcoma. Following two courses of neoadjuvant chemotherapy, the tumor was widely excised en bloc. Autologous fibula with a vascular pedicle was utilized for reconstruction during the procedure. In the postoperative follow-up, no local recurrence of the tumor was observed. Furthermore, the patient retained satisfactory wrist flexion and pronation function in the left forearm. Conclusions: Alveolar rhabdomyosarcoma is an uncommon and highly aggressive form of soft tissue sarcoma. Scientific management necessitates a multidisciplinary approach, combining chemotherapy with surgery. In cases where the tumor invaded into compartment of the bone, careful consideration should be given to the boundaries of tumor resection, the extent of osteotomy, and the approach to musculoskeletal reconstruction when designing the surgical plan. Through reporting our own case and thoroughly reviewing previous clinical experiences, we aim to provide valuable insights for the treatment of this particular disease.

9.
Sci Rep ; 14(1): 9472, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658800

ABSTRACT

For end-stage liver disease in children, living donor liver transplantation (LDLT) is often the important standard curative treatment. However, there is a lack of research on early recovery of graft function after pediatric LDLT. This is a single-center, ambispective cohort study. We collected the demographic and clinicopathological data of donors and recipients, and determined the risk factors of postoperative delayed recovery of hepatic function (DRHF) by univariate and multivariate Logistic analyses. 181 cases were included in the retrospective cohort and 50 cases in the prospective cohort. The incidence of DRHF after LDLT in children was 29.4%, and DRHF could well evaluate the early recovery of graft function after LDLT. Through Logistic analyses and AIC score, preoperative liver function of donors, ischemia duration level of the liver graft, Ln (Cr of recipients before operation) and Ln (TB of recipients on the 3rd day after operation) were predictive indicators for DRHF after LDLT in children. Using the above factors, we constructed a predictive model to evaluate the incidence of postoperative DRHF. Self-verification and prospective internal verification showed that this prediction model had good accuracy and clinical applicability. In conclusion, we pointed many risk factors for early delayed recovery of graft function after LDLT in children, and developed a visual and personalized predictive model for them, offering valuable insights for clinical management.


Subject(s)
Liver Transplantation , Living Donors , Humans , Liver Transplantation/adverse effects , Liver Transplantation/methods , Male , Female , Child , Child, Preschool , Risk Factors , Retrospective Studies , Infant , Recovery of Function , Prospective Studies , Adolescent , End Stage Liver Disease/surgery , Liver/surgery
10.
Food Chem ; 449: 139304, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608611

ABSTRACT

To evaluate the effect of high voltage pulsed electric field (PEF) treatment (10-20 kV/cm, 5-15 min) on the structural characteristics and sensitization of crude extracts of arginine kinase from Fenneropenaeus chinensis. By simulated in vitro gastric juice digestion (SGF), intestinal juice digestion (SIF) and enzyme-linked immunosorbent assay (ELISA), AK sensitization was reduced by 42.5% when treated for 10 min at an electric field intensity of 15 kV/cm. After PEF treatment, the α-helix content decreased, and the α-helix content gradually changed to ß-sheet and ß-turn. Compared to the untreated group, the surface hydrophobicity increased and the sulfhydryl content decreased. SEM and AFM analyses showed that the treated sample surface formed a dense porous structure and increased roughness. The protein content, dielectric properties, and amino acid content of sample also changed significantly with the changes in the treatment conditions. Non-thermal PEF has potential applications in the development of hypoallergenic foods.


Subject(s)
Arginine Kinase , Penaeidae , Animals , Arginine Kinase/chemistry , Arginine Kinase/immunology , Arginine Kinase/metabolism , Penaeidae/chemistry , Penaeidae/enzymology , Penaeidae/immunology , Electricity , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/metabolism , Humans , Allergens/chemistry , Allergens/immunology
11.
J Asian Nat Prod Res ; 26(5): 555-561, 2024 May.
Article in English | MEDLINE | ID: mdl-38563409

ABSTRACT

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).


Subject(s)
Pyrones , Talaromyces , Xanthine Oxidase , Talaromyces/chemistry , Molecular Structure , Pyrones/chemistry , Pyrones/pharmacology , Pyrones/isolation & purification , Xanthine Oxidase/antagonists & inhibitors , Nuclear Magnetic Resonance, Biomolecular , Naphthalenes/chemistry , Naphthalenes/isolation & purification , Naphthalenes/pharmacology , Circular Dichroism
12.
Int J Biol Macromol ; 267(Pt 2): 131510, 2024 May.
Article in English | MEDLINE | ID: mdl-38608989

ABSTRACT

Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.


Subject(s)
Adenosine/analogs & derivatives , Anti-Bacterial Agents , Ivermectin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Ivermectin/pharmacology , Ivermectin/analogs & derivatives , Ivermectin/chemistry , Molecular Docking Simulation , Biological Products/pharmacology , Biological Products/chemistry , Microbial Sensitivity Tests , Carbon-Nitrogen Ligases/metabolism , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Mutagenesis, Site-Directed
13.
Sci Total Environ ; 930: 172425, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38643874

ABSTRACT

Aedes albopictus, a virus-vector pest, is primarily controlled through the use of insecticides. In this study, we investigated the mechanisms of resistance in Ae. albopictus in terms of chlorpyrifos neurotoxicity to Ae. albopictus and its effects on the olfactory system. We assessed Ca2+-Mg2+-ATP levels, choline acetyltransferase (ChAT), Monoamine oxidase (MAO), odorant-binding proteins (OBPs), and olfactory receptor (OR7) gene expression in Ae. albopictus using various assays including Y-shaped tube experiments and DanioVision analysis to evaluate macromotor behavior. Our findings revealed that cumulative exposure to chlorpyrifos reduced the activity of neurotoxic Ca2+-Mg2+-ATPase and ChAT enzymes in Ae. albopictus to varying degrees, suppressed MAO-B enzyme expression, altered OBPs and OR7 expression patterns, as well as affected evasive response, physical mobility, and cumulative locomotor time under chlorpyrifos stress conditions for Ae. albopictus individuals. Consequently, these changes led to decreased feeding ability, reproductive capacity, and avoidance behavior towards natural enemies in Ae. albopictus populations exposed to chlorpyrifos stressors over time. To adapt to unfavorable living environments, Ae. albopictus may develop certain tolerance mechanisms against organophosphorus pesticides. This study provides valuable insights for guiding rational insecticide usage or dosage adjustments targeting the nervous system of Ae. albopictus.


Subject(s)
Aedes , Chlorpyrifos , Insecticides , Animals , Chlorpyrifos/toxicity , Aedes/drug effects , Insecticides/toxicity , Insecticide Resistance/genetics , Pesticide Residues
14.
Small ; : e2400941, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529737

ABSTRACT

Multidimensional metabolic analysis has become a new trend in establishing efficient disease monitoring systems, as the constraints associated with relying solely on a single dimension in refined monitoring are increasingly pronounced. Here, coordination polymers are employed as derivative precursors to create multishell hollow hybrids, developing an integrated metabolic monitoring system. Briefly, metabolic fingerprints are extracted from hundreds of serum samples and urine samples, encompassing not only membranous nephropathy but also related diseases, using high-throughput mass spectrometry. With optimized algorithm and initial feature selection, the established combined panel demonstrates enhanced accuracy in both subtype differentiation (over 98.1%) and prognostic monitoring (over 95.6%), even during double blind test. This surpasses the serum biomarker panel (≈90.7% for subtyping, ≈89.7% for prognosis) and urine biomarker panel (≈94.4% for subtyping, ≈76.5% for prognosis). Moreover, after attempting to further refine the marker panel, the blind test maintains equal sensitivity, specificity, and accuracy, showcasing a comprehensive improvement over the single-fluid approach. This underscores the remarkable effectiveness and superiority of the integrated strategy in discriminating between MN and other groups. This work has the potential to significantly advance diagnostic medicine, leading to the establishment of more effective strategies for patient management.

15.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425519

ABSTRACT

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

16.
Anal Chem ; 96(13): 5160-5169, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38470972

ABSTRACT

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which is a label-free imaging technique, determines the spatial distribution and relative abundance of versatile endogenous metabolites in tissues. Meanwhile, matrix selection is generally regarded as a pivotal step in MALDI tissue imaging. This study presents the first report of a novel MALDI matrix, 2-hydroxy-5-nitro-3-(trifluoromethyl)pyridine (HNTP), for the in situ detection and imaging of endogenous metabolites in rat liver and brain tissues by MALDI-MS in positive-ion mode. The HNTP matrix exhibits excellent characteristics, including strong ultraviolet absorption, µm-scale matrix crystals, high chemical stability, low background ion interference, and high metabolite ionization efficiency. Notably, the HNTP matrix also shows superior detection capabilities, successfully showing 185 detectable metabolites in rat liver tissue sections. This outperforms the commonly used matrices of 2,5-dihydroxybenzoic acid and 2-mercaptobenzothiazole, which detect 145 and 120 metabolites from the rat liver, respectively. Furthermore, a total of 152 metabolites are effectively detected and imaged in rat brain tissue using the HNTP matrix, and the spatial distribution of these compounds clearly shows the heterogeneity of the rat brain. The results demonstrate that HNTP is a new and powerful positive-ion mode matrix to enhance the analysis of metabolites in biological tissues by MALDI-MSI.


Subject(s)
Diagnostic Imaging , Liver , Rats , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Liver/metabolism , Pyridines/analysis
17.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535690

ABSTRACT

Flexible thermoelectric generators (FTEGs), which can overcome the energy supply limitations of wearable devices, have received considerable attention. However, the use of toxic Te-based materials and fracture-prone electrodes constrains the application of FTEGs. In this study, a novel Ag2Se and Poly (3,4-ethylene dioxythiophene): poly (styrene sulfonate) (PEDOT:PSS)/multi-walled carbon nanotube (MWCNT) FTEG with a high output performance and good flexibility is developed. The thermoelectric columns formulated in the work are environmentally friendly and reliable. The key enabler of this work is the use of embedded EGaIn electrodes, which increase the temperature difference collected by the thermoelectric column, thereby improving the FTEG output performance. Additionally, the embedded EGaIn electrodes could be directly printed on polydimethylsiloxane (PDMS) molds without wax paper, which simplifies the preparation process of FTEGs and enhances the fabrication efficiency. The FTEG with embedded electrodes exhibits the highest output power density of 25.83 µW/cm2 and the highest output power of 10.95 µW at ΔT = 15 K. The latter is 31.6% higher than that of silver-based FTEGs and 2.5% higher than that of covered EGaIn-based FTEGs. Moreover, the prepared FTEG has an excellent flexibility (>1500 bends) and output power stability (>30 days). At high humidity and high temperature, the prepared FTEG maintains good performance. These results demonstrate that the prepared FTEGs can be used as a stable and environmentally friendly energy supply for wearable devices.

18.
Opt Express ; 32(4): 4931-4943, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439232

ABSTRACT

Wide-range high-precision velocity detection with nitrogen-vacancy (NV) color center has been realized. By treating the NV color center as a mixer, the high-precision microwave measurement is realized. Through optimization of acquisition time, the microwave frequency resolution is improved to the mHz level. Combined with the frequency-velocity conversion model, velocity detection is realized in the range of 0-100 cm/s, and the velocity resolution is up to 0.012 cm/s. The maximum deviation in repeated measurements does not exceed 1/1000. Finally, combined with the multiplexed microwave reference technique, the range of velocity can be extended to 7.4 × 105 m/s. All of the results provide reference for high-precision velocity detection and play a significant role in various domains of quantum precision measurement. This study provides a crucial technical foundation for the development of high-dynamic-range velocity detectors and novel quantum precision velocity measurement technologies.

19.
Anal Chem ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38323920

ABSTRACT

Exosome metabolite-based liquid biopsy is a promising strategy for large-scale application in practical clinics toward precise medicine. Given the current challenges in successive isolation and analysis of exosomes and their metabolites in this field, we established a low-cost, high-throughput, and rapid platform for serological exosome metabolic biopsy of hepatocellular carcinoma (HCC) via designed core-shell nanoparticles. It starts with the efficient extraction of high-quality serum exosomes and exosome metabolic features, based on which significantly obvious sample clusters are observed by unsupervised cluster analysis. The following integration of feature selection and supervised machine learning enables the identification of six key metabolites and achieves high-performance prediction between HCC, liver cirrhosis, and healthy controls. Specifically, both sensitivity and accuracy achieve 100% among any pairwise intergroup discrimination in a blind test. The quality and reliability of six key metabolites are further evaluated and validated by using different machine learning algorithms and pathway exploration. Our platform contributes to the future growth of new liquid biopsy technologies for precision diagnosis and real-time monitoring of HCC, among other conditions.

20.
Nat Commun ; 15(1): 1675, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396104

ABSTRACT

Single-atom catalysts, especially those with metal-N4 moieties, hold great promise for facilitating the oxygen reduction reaction. However, the symmetrical distribution of electrons within the metal-N4 moiety results in unsatisfactory adsorption strength of intermediates, thereby limiting their performance improvements. Herein, we present atomically coordination-regulated Co single-atom catalysts that comprise a symmetry-broken Cl-Co-N4 moiety, which serves to break the symmetrical electron distribution. In situ characterizations reveal the dynamic evolution of the symmetry-broken Cl-Co-N4 moiety into a coordination-reduced Cl-Co-N2 structure, effectively optimizing the 3d electron filling of Co sites toward a reduced d-band electron occupancy (d5.8 → d5.28) under reaction conditions for a fast four-electron oxygen reduction reaction process. As a result, the coordination-regulated Co single-atom catalysts deliver a large half-potential of 0.93 V and a mass activity of 5480 A gmetal-1. Importantly, a Zn-air battery using the coordination-regulated Co single-atom catalysts as the cathode also exhibits a large power density and excellent stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...