Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 173: 116297, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38394854

ABSTRACT

Hericium erinaceus mycelium extract (HEM), containing erinacine A (HeA) and erinacine S (HeS), has shown promise in promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), crucial for myelin production in the central nervous system (CNS). The main aim of this study was to characterize the protective effects of HEM and its components on OLs and myelin in demyelinating rodents by exposure to cuprizone (CPZ), a copper chelating agent commonly used to induce demyelination in the corpus callosum of the brain. Rats were fed by CPZ-containing diet and simultaneously orally administered HEM, HeA, or HeS on a daily basis for three weeks. We found that HEM and HeS preserved myelin and OLs in the corpus callosum of CPZ-fed rats, along with reduced microglia and astrocyte activation, and downregulated IL-1ß expression. Furthermore, post-treatment with HeS, in mouse models with acute (6 weeks) or chronic (12 weeks) CPZ-induced demyelination demonstrated oral administration during the final 4 weeks (HeS4/6 or HeS4/12) effectively preserved myelin in the corpus callosum. Additionally, HeS4/6 and HeS4/12 inhibited anxious and depressive-like behaviors in CPZ-fed mice. In summary, simultaneous administration of HEM and HeS in rats during short-term CPZ intoxication preserved OLs and myelin. Furthermore, post-administration of HeS not only inhibited demyelination and gliosis but also alleviated anxiety and depression in both acute and chronic CPZ-fed mice. This study presents compelling evidence supporting the potential of HeS as a promising small active compound for protecting OLs and preserving myelin in demyelinating diseases associated with emotional disorders.


Subject(s)
Cuprizone , Demyelinating Diseases , Hericium , Rats , Mice , Animals , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/drug therapy , Demyelinating Diseases/prevention & control , Rodentia , Oligodendroglia , Myelin Sheath/metabolism , Mice, Inbred C57BL , Disease Models, Animal
2.
Nanomaterials (Basel) ; 13(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37947667

ABSTRACT

Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6-146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ.

3.
Front Chem ; 10: 918715, 2022.
Article in English | MEDLINE | ID: mdl-36059870

ABSTRACT

The emergence of nanomedicines (NMs) in the healthcare industry will bring about groundbreaking improvements to the current therapeutic and diagnostic scenario. However, only a few NMs have been developed into clinical applications due to a lack of regulatory experience with them. In this article, we introduce the types of NM that have the potential for clinical translation, including theranostics, multistep NMs, multitherapy NMs, and nanoclusters. We then present the clinical translational challenges associated with NM from the pharmaceutical industry's perspective, such as NMs' intrinsic physiochemical properties, safety, scale-up, lack of regulatory experience and standard characterization methods, and cost-effectiveness compared with their traditional counterparts. Overall, NMs face a difficult task to overcome these challenges for their transition from bench to clinical use.

4.
Front Cell Neurosci ; 15: 713336, 2021.
Article in English | MEDLINE | ID: mdl-34744630

ABSTRACT

Glioma, the most common subtype of primary brain tumor, is an aggressive and highly invasive neurologically tumor among human cancers. Interleukin-33 (IL-33) is considered as a dual functional cytokine, an alarmin upon tissue damage and a nuclear chromatin-associated protein. Despite that, IL-33 is known to foster the formation of the inflammatory tumor microenvironment and facilitate glioma progression, evidence showing nuclear IL-33 function is still poor. In this study using lentivirus-mediated IL-33 gene knockdown (IL33KD) and IL-33 overexpression (IL33oe) in rat C6 glioma cells and human glioma cell lines (U251MG and U87MG), we found that IL33oe-glioma cells had resistance to the insults of the alkylating agent, temozolomide (TMZ), possibly because of the increased expression of DNA repair genes (i.e., BRCA1, BRCA2, Rad51, FANCB, and FANCD) in IL33oe-glioma cells. Alternatively, examination of glioma nuclear shape from transmission electron microscopy (TEM) imaging analysis and immunofluorescence for histone protein H2A staining showed that IL33KD attenuated the abnormal cancerous nuclear characteristic, such as indentation, long clefts, and multiple nucleoids. Yet, IL33oe promoted the changes in glioma nuclear shapes, such as the formation of multiple lobes. We further found that histone proteins, H2A and H3, were reduced in IL33KD glioma cells. The non-histone DNA-binding nucleoproteins, the high mobility group A1 (HMGA1) and HMGA2, were also downregulated by IL33KD. In contrast, IL33oe increased H2A and H3 proteins and HMGA1 and HMGA2 in glioma cells. Altogether, the upregulation of nuclear IL-33 expression was along with an increase in the expression of DNA repair genes, contributing to the desensitization of glioma cells to DNA damaging agents. Moreover, nuclear IL-33 proteins in cooperation with chromatin-associated proteins regulate glioma nuclear structure, which might be crucial for glioma progression and malignancy.

5.
PLoS One ; 16(9): e0256920, 2021.
Article in English | MEDLINE | ID: mdl-34469501

ABSTRACT

Microdialysis is a minimally invasive sampling technique which is widely applied in many fields including clinical studies. This technique usually has limitation on sampling hydrophobic compounds as aqueous solutions are commonly used as the perfusates. The relative recovery of hydrophobic compounds is often low and irreproducible because of the non-specific binding to microdialysis membranes or catheter tubing. Carriers such as cyclodextrins have been used to improve the recovery and consistency, however the identification of an optimal carrier can only be achieved after time-consuming and costly microdialysis experiments. We therefore developed a rapid, convenient, and low-cost method to identify the optimal carriers for sampling hydrophobic compounds with the use of centrifugal ultrafiltration. Doxorubicin was used as the model compound and its relative recoveries obtained from centrifugal ultrafiltration and from microdialysis were compared. The results show that the relative recoveries are highly correlated (correlation coefficient ≥ 0.9) between centrifugal ultrafiltration and microdialysis when different types or different concentrations of cyclodextrins were used as the carriers. In addition to doxorubicin, this method was further confirmed on three other drugs with different hydrophobicity. This method may facilitate and broaden the use of microdialysis perfusion on sampling or delivering hydrophobic substances in various applications.


Subject(s)
Cyclodextrins/chemistry , High-Throughput Screening Assays/methods , Microdialysis/methods , Specimen Handling/methods , Doxorubicin/analysis , Doxorubicin/chemistry , Hydrophobic and Hydrophilic Interactions , Temozolomide/analysis , Temozolomide/chemistry , Ultrafiltration
7.
Sci Rep ; 11(1): 6551, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753806

ABSTRACT

Oligodendrocytes (OLs), myelin-producing glia in the central nervous system (CNS), produce a myelin extension that enwraps axons to facilitate action potential propagation. An effective approach to induce oligodendrogenesis and myelination is important to foster CNS development and promote myelin repair in neurological diseases. Hericium (H.) erinaceus, an edible and culinary-medicinal mushroom, has been characterized as having neuroprotective activities. However, its effect on OL differentiation has not yet been uncovered. In this study using oligodendrocyte precursor cell (OPC) cultures and an ex vivo cerebellar slice system, we found that the extract from H. erinaceus mycelium (HEM) not only promoted the differentiation of OPCs to OLs in the differentiation medium, but also increased the level of myelin basic protein (MBP) on neuronal fibers. Moreover, daily oral administration of HEM into neonatal rat pups for 7 days enhanced MBP expression and OLs in the corpus callosum of the postnatal rat brain. The effect of HEM-derived bioactive compounds, the diterpenoid xylosides erinacine A (HeA) and HeC and a sesterterpene with 5 isoprene units called HeS, were further evaluated. The results showed that HeA and HeS more potently stimulated MBP expression in OLs and increased the number of OLs. Moreover, overlap between MBP immunoreactivity and neuronal fibers in cultured cerebellar tissue slices was significantly increased in the presence of HeA and HeS. In summary, our findings indicate that HEM extract and its ingredients HeA and HeS display promising functional effects and promote OL maturation, providing insights into their potential for myelination in neurodevelopmental disorders.


Subject(s)
Biological Products/pharmacology , Hericium/metabolism , Mycelium , Myelin Basic Protein/biosynthesis , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Animals , Cell Differentiation/drug effects , Cell Survival , Cells, Cultured , Gene Expression , Molecular Structure , Myelin Basic Protein/genetics , Oligodendroglia/cytology , Rats
8.
Medicina (Kaunas) ; 56(11)2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33227992

ABSTRACT

Background and objectives: Cancer stem cells (CSCs) are obstacles to cancer therapy due to their therapeutic resistance, ability to initiate neoplasia, and roles in tumor relapse and metastasis. Efforts have been made to cure CSCs, such as the use of differentiation therapy, which induces cancer stem-like cells to undergo differentiation and decrease their tumorigenicity. Interleukin 6 (IL-6) upregulates the expression of glial fibrillary acidic protein (GFAP) in C6 glioma cells, indicating that it is able to induce the differentiation of these cells. The C6 glioma cell line forms a high percentage of cancer stem-like cells, leading us to speculate whether IL-6 signaling could modulate the differentiation of tumorigenic C6 glioma cells. However, we observed that IL-6 alone could not efficiently induce the differentiation of these cells. Therefore, different IL-6 signaling elicitors, including IL-6 alone, a combination of IL-6 and soluble IL-6 receptor (IL-6/sIL-6R), and tumor necrosis factor-α (TNF-α) plus IL-6/sIL-6R (TNF-α/IL-6/sIL-6R), were evaluated for their potential use in differentiation therapy. Materials and Methods: The potential of IL-6 signaling elicitors in differentiation therapy were examined by assessing changes in biomarker levels, the rate of cell proliferation, and tumorigenicity, respectively. Results: Enhanced IL-6 signaling could effectively induce C6 glioma cell differentiation, as determined by observed variations in the expression of differentiation, cell cycle, and stem cell biomarkers. Additionally, the total cell population and the tumorigenicity of glioma cells were all considerably reduced after TNF-α/IL-6/sIL-6R treatment. Conclusions: Our findings provide evidence that enhanced IL-6 signaling can efficiently promote tumorigenic C6 glioma cells to undergo differentiation.


Subject(s)
Glioma , Interleukin-6 , Cell Differentiation , Humans , Neoplasm Recurrence, Local , Tumor Necrosis Factor-alpha
9.
Int J Mol Sci ; 21(21)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142808

ABSTRACT

Polyethylene glycol (PEG) coating of gold nanoparticles (AuNPs) improves AuNP distribution via blood circulation. The use of PEG-coated AuNPs was shown to result in acute injuries to the liver, kidney, and spleen, but long-term toxicity has not been well studied. In this study, we investigated reporter induction for up to 90 days in NF-κB transgenic reporter mice following intravenous injection of PEG-coated AuNPs. The results of different doses (1 and 4 µg AuNPs per gram of body weight), particle sizes (13 nm and 30 nm), and PEG surfaces (methoxyl- or carboxymethyl-PEG 5 kDa) were compared. The data showed up to 7-fold NF-κB reporter induction in mouse liver from 3 h to 7 d post PEG-AuNP injection compared to saline-injected control mice, and gradual reduction to a level similar to control by 90 days. Agglomerates of PEG-AuNPs were detected in liver Kupffer cells, but neither gross pathological abnormality in liver sections nor increased activity of liver enzymes were found at 90 days. Injection of PEG-AuNPs led to an increase in collagen in liver sections and elevated total serum cholesterol, although still within the normal range, suggesting that inflammation resulted in mild fibrosis and affected hepatic function. Administrating PEG-AuNPs inevitably results in nanoparticles entrapped in the liver; thus, further investigation is required to fully assess the long-term impacts by PEG-AuNPs on liver health.


Subject(s)
Gold/chemistry , Inflammation/pathology , Liver/pathology , Metal Nanoparticles/toxicity , NF-kappa B/genetics , Polyethylene Glycols/chemistry , Animals , Inflammation/chemically induced , Inflammation/metabolism , Liver/drug effects , Liver/metabolism , Luciferases , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism
10.
BMC Neurosci ; 20(1): 33, 2019 07 10.
Article in English | MEDLINE | ID: mdl-31291887

ABSTRACT

BACKGROUND: Hypothalamic inflammation including astrogliosis and microglia activation occurs after intake of high fat diet (HFD) in rodent models or in obese individuals. However, the effect of chronic HFD feeding on oligodendrocytes (OLGs), a myelin-producing glial population in the central nervous system (CNS), remains unclear. In this study, we used 8-week old male C57BL/6 mice fed by HFD for 3-6 months to induce chronic obesity. RESULTS: The transmission electron microscopy imaging analysis showed that the integrity of hypothalamic myelin was disrupted after HFD feeding for 4 and 6 months. Moreover, the accumulation of Iba1+-microglia with an amoeboid hypertrophic form was continually observed in arcuate nucleus of HFD-fed mice during the entire feeding time period. Interleukin-33 (IL-33), a tissue alarmin upon injury to the CNS, was detected with an increased level in hypothalamus after HFD feeding for 3 and 4 months. Furthermore, the in vitro study indicated that exposure of mature OLGs to IL-33 impaired OLG cell structure along with a decline in the expression of myelin basic protein. CONCLUSIONS: Altogether, our findings demonstrate that chronic HFD feeding triggers hypothalamic myelin disruption in accompany with IL-33 upregulation and prolonged microglial activation in hypothalamus. Given that the addition of exogenous IL-33 was harmful for the maturation of OLGs, an increase in IL-33 by chronic HFD feeding might contribute to the induction of hypothalamic myelin disruption.


Subject(s)
Diet, High-Fat/adverse effects , Hypothalamus/metabolism , Interleukin-33/metabolism , Myelin Sheath/pathology , Up-Regulation , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Arcuate Nucleus of Hypothalamus/pathology , Hypothalamus/pathology , Male , Mice , Myelin Basic Protein/biosynthesis , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligodendroglia/pathology , Primary Cell Culture , Rats , Time Factors
11.
Brain Res ; 1719: 124-132, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31153914

ABSTRACT

Increasing evidence has supported that transplantation of human stem cells induces neuroprotective and reparative effects in animal models of Parkinson's disease (PD). However, without systemic immunosuppressive therapy, most of these grafted cells are rejected by the hosts. Long term and systemic injection of cyclosporine-A (CsA) is required to maintain the survival of grafted cells. The purpose this study is to examine a new treatment strategy to suppress the immunorejection by locally co-grafting of polylactic/glycolic acid nanoparticles containing CsA (NanoCsA) with differentiated human induced pluripotent stem cells (iPSCs). In the in vitro media, NanoCsA provided sustained release of CsA for >6 weeks. The differentiated human iPSCs were co-grafted with NanoCsA or NanoVeh (nanoparticle without CsA) to the striatum of unilaterally 6-hydroxydopamine -lesioned rats. NanoCsA/iPSCs co-graft significantly improved locomotor activity compared to NanoVeh/iPSCs co-grafts or iPSC grafts + sytemic CsA at 1 month after transplantation. Brain tissues were collected for measurements of tyrosine hydroxylase (TH) and human marker Stem121 immunoreactivity. Cografting with NanoCsA/iPSCs, compared to NanoVeh/iPSCs, significantly increased TH and Stem121 immunoreactivity as well as tumor formation in the lesioned striatum. Taken together, our study supports that NanoCsA provides long-lasting CsA release and reduces immunorejection of human iPSCs xenograft in a 6-hydroxydopamine rat model of PD.


Subject(s)
Cyclosporine/pharmacology , Graft Survival/drug effects , Stem Cell Transplantation/methods , Animals , Cell Differentiation/drug effects , Corpus Striatum/drug effects , Cyclosporine/administration & dosage , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/transplantation , Male , Nanoparticles/therapeutic use , Neurons/drug effects , Neurons/metabolism , Oxidopamine/pharmacology , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Transplantation, Heterologous/methods
12.
Front Microbiol ; 9: 1086, 2018.
Article in English | MEDLINE | ID: mdl-29887848

ABSTRACT

We previously reported the sequential recovery of daptomycin-nonsusceptible MRSA clinical isolates with an L431F substitution in the MprF protein. The aim of the present study is to determine the effect of this mutation by replacing the mprF gene on the chromosome of a daptomycin-susceptible progenitor strain, CGK5, to obtain CGK5mut having the L431F MprF mutation. Compared to CGK5, the daptomycin and vancomycin MICs of CGK5mut increased from 0.5 to 3 µg/ml and from 1.5 to 3 µg/ml, respectively; however, its oxacillin MIC decreased from 128 to 1 µg/ml in medium without added 2% NaCl. The expression levels of vraSR and several other cell-wall synthesis-related genes were significantly increased in CGK5mut, and the mutant also had significantly reduced negative cell membrane charge, thicker cell wall, and longer doubling time. These features were abolished in the reverse mutant carrying F431L MprF, confirming the pleiotropic effects of the L431F MprF mutation. We believe that this is the first work that shows a single MprF missense mutation can lead to not only changes in the cell membrane but also increased expression of vraSR and subsequently increased resistance to daptomycin and vancomycin while simultaneously conferring increased susceptibility to oxacillin in an isogenic MRSA strain.

13.
Front Mol Neurosci ; 11: 4, 2018.
Article in English | MEDLINE | ID: mdl-29416501

ABSTRACT

B-cell CLL/lymphoma 11B (Bcl11b) - a C2H2 zinc finger transcriptional factor - is known to regulate neuronal differentiation and function in the development of the central nervous system (CNS). Although its expression is reduced during oligodendrocyte (OLG) differentiation, its biological role in OLGs remains unknown. In this study, we found that the downregulation of Bcl11b gene expression in glial progenitor cells (GPCs) by lentivirus-mediated gene knockdown (KD) causes a reduction in cell proliferation with inhibited expression of stemness-related genes, while increasing the expression of cell cyclin regulator p21. In contrast, OLG specific transcription factors (Olig1) and OLG cell markers, including myelin proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG), were upregulated in Bcl11b-KD GPCs. Chromatin immunoprecipitation (ChIP) analysis indicated that Bcl11b bound to the promoters of Olig1 and PLP, suggesting that Bcl11b could act as a repressor for Olig1 and PLP, similar to its action on p21. An increase in the number of GC+- or PLP+- OLGs derived from Bcl11b-KD GPCs or OLG precursor cells was also observed. Moreover, myelin basic protein (MBP) expression in OLGs derived from Bcl11b-KD GPCs was enhanced in hippocampal neuron co-cultures and in cerebellar brain-slice cultures. The in vivo study using a lysolecithin-induced demyelinating animal model also indicated that larger amounts of MBP+-OLGs and PLP+-OLGs derived from implanted Bcl11b-KD GPCs were present at the lesioned site of the white matter than in the scramble group. Taken together, our results provide insight into the functional role of Bcl11b in the negative regulation of GPC differentiation through the repression of OLG differentiation-associated genes.

14.
J Neurosci Res ; 94(12): 1460-1471, 2016 12.
Article in English | MEDLINE | ID: mdl-27629530

ABSTRACT

CD200, a type I transmembrane glycoprotein, can interact with its receptor CD200R, which plays an inhibitory role in the activation of microglia-the resident macrophages of the central nervous system. In this study, the rat C6 glioma cell line (C6-1) that was previously characterized with high in vivo tumorigenicity was found to generate CD200 mRNA abundantly. However, CD200 expression was barely detected in another C6 glioma cell clone (C6-2) that was previously found to display low tumorigenic behavior. The results from CD200 immunohistochemistry on human glioma tissue array also showed that tumor cells in Grade I-II astrocytoma expressed a lower level of CD200 immunoreactivity than those detected in Grade III-IV glioblastoma multiforme. C6-1 transfectants with stable downregulation of CD200 gene expression using lentivirus knockdown approach were generated (C6-KD). Microglia and iNOS+ cells were increased when microglia were co-cultured with C6-KD cells. The colony formation of C6-KD was also augmented when those cells were co-cultured with microglia. Yet, increased colony formation of C6-KD transfectants in the co-culture with microglia was effectively suppressed by interleukin (IL)-4 and IL-10. The in vivo results indicated that the tumor formation of C6-1 cells in rat brain was promoted after CD200 gene knockdown. Moreover, CD11b+ activated microglia and iNOS+ microglia were highly accumulated in the tumor site formed by C6-KD. In conclusion, our findings demonstrate that the downregulation of CD200 expression in CD200-rich glioma cells could foster the formation of an activated microglia-associated tumor microenvironment, leading to glioma progression. © 2016 Wiley Periodicals, Inc.


Subject(s)
Antigens, CD/biosynthesis , Brain Neoplasms/metabolism , Glioma/metabolism , Macrophage Activation , Microglia , Animals , Antigens, CD/genetics , Astrocytoma/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Gene Knockdown Techniques , Glioblastoma/metabolism , Glioma/pathology , Humans , Immunohistochemistry , Interleukin-10/pharmacology , Interleukin-4/pharmacology , Male , Nitric Oxide Synthase Type II/metabolism , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley
15.
Phys Chem Chem Phys ; 18(8): 5905-9, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26856872

ABSTRACT

Liquid layers adhered to solid surfaces and that are in equilibrium with the vapor phase are common in printing, coating, and washing processes as well as in alveoli in lungs and in stomata in leaves. For such a liquid layer in equilibrium with the vapor it faces, it has been generally believed that, aside from liquid lumps, only a very thin layer of the liquid, i.e., with a thickness of only a few nanometers, is held onto the surface of the solid, and that this adhesion is due to van der Waals forces. A similar layer of water can remain on the surface of a wall of a microchannel after evaporation of bulk water creates a void in the channel, but the thickness of such a water layer has not yet been well characterized. Herein we showed such a water layer adhered to a microchannel wall to be 100 to 170 nm thick and stable against surface tension. The water layer thickness was measured using electron energy loss spectroscopy (EELS), and the water layer structure was characterized by using a quantitative nanoparticle counting technique. This thickness was found for channel gap heights ranging from 1 to 5 µm. Once formed, the water layers in the microchannel, when sealed, were stable for at least one week without any special care. Our results indicate that the water layer forms naturally and is closely associated only with the surface to which it adheres. Our study of naturally formed, stable water layers may shed light on topics from gas exchange in alveoli in biology to the post-wet-process control in the semiconductor industry. We anticipate our report to be a starting point for more detailed research and understanding of the microfluidics, mechanisms and applications of gas-liquid-solid systems.

16.
Mol Neurobiol ; 53(6): 3528-3539, 2016 08.
Article in English | MEDLINE | ID: mdl-26096706

ABSTRACT

B cell CLL/lymphoma 11B (Bcl11b), a C2H2 zinc finger transcription factor, not only serves as a critical regulator in development but also plays the controversial role in T cell acute lymphoblastic leukemia (T-ALL). We previously found that the enriched expression of Bcl11b was detected in high tumorigenic C6 glioma cells. However, the role of Bcl11b in glioma malignancy and its mechanisms remains to be uncovered. In this study, using the lentivirus-mediated knockdown (KD) approach, we found that Bcl11b KD in tumorigenic C6 cells reduced the cell proliferation, colony formation, and migratory ability. The results were further verified using two human malignant glioma cell lines, U87 and U251 cells. A cyclin-dependent kinase inhibitor p21, a known Bcl11b target, was significantly upregulated in tumorigenic C6, U87, and U251 cells after Bcl11b KD. Cellular senescence was observed by examination of the ß-galactosidase activity in U87 and U251 cells with Bcl11b KD. Reduced expression of stemness gene Sox-2 and its downstream effector Bmi-1 was also observed in U87 and U251 cells with Bcl11b KD. These results suggest that the ablation of Bcl11b gene expression induced glioma cell senescence. Propidium iodide (PI) staining combined with flow cytometry analysis also showed that Bcl11b KD led to the cell cycle arrest of U87 and U251 cells at the G0/G1 or at the S phase, indicating that Bcl11b is required for glioma cell cycle progression. Together, this is the first study to show that the inhibition of Bcl11b suppresses glioma cell growth by regulating the expression of the cell cycle regulator p21 and stemness-associated genes (Sox-2/Bmi-1).


Subject(s)
Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Animals , Brain Neoplasms/genetics , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cellular Senescence/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Down-Regulation/genetics , Gene Knockdown Techniques , Humans , Polycomb Repressive Complex 1/metabolism , Rats , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism , Up-Regulation/genetics
17.
Anal Chim Acta ; 889: 166-71, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26343439

ABSTRACT

This study developed an affinity-gradient nano-stationary phase (AG-NSP) for protein analysis using nanofluidic capillary electrochromatography (nano-CEC) conjugated with matrix assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). The AG-NSP can be used for protein pre-separation in nano-CEC and as a matrix carrier for protein analysis in MALDI-TOF-MS. A hydrophobicity gradient in AG-NSP was photochemically formed by grafting 4-azidoaniline hydrochloride on vertically arrayed multi-wall carbon nanotubes (MWCNTs) through gray-level exposure to UV light. The reversed-phase gradient stationary phase in AG-NSP was tailored according to the properties of the mobile phase gradient in capillary electrochromatography. As a result, the operation of the system is easily automated using a single buffer solution without the need for multiple solvents for elution. The use of nano-CEC with AG-NSP demonstrated excellent separation efficiency and high resolution for various types of DNA/protein/peptide. MALDI-TOF-MS analysis was then performed directly on the separated proteins and peptides on the chip. The proposed system was then used for the detection of three types of proteins with different molecular weights and PI values, including Cytochrome c (12,360, pI = 10), Lysozyme (14,300, pI = 11), and BSA (86,000, pI = 5)), and digested IgG fragments. The proposed system provided resolution of 1000 Da for the proteins in this study and the separation of digested IgG fragments at a low concentration of 1.2 pmol µL(-1).


Subject(s)
Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Capillary Electrochromatography , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Cytochromes c/analysis , Immunoglobulin G/analysis , Immunoglobulin G/metabolism , Muramidase/analysis , Nanotechnology , Serum Albumin, Bovine/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
18.
J Pathol ; 237(1): 50-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25925728

ABSTRACT

Ghrelin is an appetite-regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS-R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up-regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786-0, ACHN and A-498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E-cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter-binding activity of Snail. Snail silencing blocked the ghrelin-mediated effects on E-cadherin repression and cell migration. Snail-E-cadherin regulation was mediated by GHS-R-triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin-induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS-R-PI3K-Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset].


Subject(s)
Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/secondary , Cell Movement , Ghrelin/metabolism , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Transcription Factors/metabolism , Animals , Antigens, CD , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Cell Line, Tumor , Cell Movement/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Ghrelin/genetics , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Male , Mice, Inbred NOD , Mice, SCID , Neoplasm Invasiveness , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Promoter Regions, Genetic/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptors, Ghrelin/genetics , Receptors, Ghrelin/metabolism , Signal Transduction , Snail Family Transcription Factors , Time Factors , Transcription Factors/genetics , Transfection
19.
Anal Chem ; 87(1): 601-8, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25424326

ABSTRACT

This study aims to establish a (198)Au-radiotracer technique for in vivo tracing, rapid quantification, and ex vivo visualization of PEGylated gold nanoparticles (GNPs) in animals, organs and tissue dissections. The advantages of GNPs lie in its superior optical property, biocompatibility and versatile conjugation chemistry, which are promising to develop diagnostic probes and drug delivery systems. (198)Au is used as a radiotracer because it simultaneously emits beta and gamma radiations with proper energy and half-life; therefore, (198)Au can be used for bioanalytical purposes. The (198)Au-tagged radioactive gold nanoparticles ((198)Au-GNPs) were prepared simply by irradiating the GNPs in a nuclear reactor through the (197)Au(n,γ)(198)Au reaction and subsequently the (198)Au-GNPs were subjected to surface modification with polyethylene glycol to form PEGylated (198)Au-GNPs. The (198)Au-GNPs retained physicochemical properties that were the same as those of GNP before neutron irradiation. Pharmacokinetic and biodisposition studies were performed by intravenously injecting three types of (198)Au-GNPs with or without PEGylation into mice; the γ radiation in blood specimens and dissected organs was then measured. The (198)Au-radiotracer technique enables rapid quantification freed from tedious sample preparation and shows more than 95% recovery of injected GNPs. Clinical gamma scintigraphy was proved feasible to explore spatial- and temporal-resolved biodisposition of (198)Au-GNPs in living animals. Moreover, autoradiography, which recorded beta particles from (198)Au, enabled visualizing the heterogeneous biodisposition of (198)Au-GNPs in different microenvironments and tissues. In this study, the (198)Au-radiotracer technique facilitated creating a trimodality analytical platform for tracing, quantifying and imaging GNPs in animals.


Subject(s)
Diagnostic Imaging/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Radioactive Tracers , Animals , Half-Life , Male , Mice , Mice, Inbred ICR , Particle Size , Radionuclide Imaging , Tissue Distribution
20.
Nanotoxicology ; 9(1): 43-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24559390

ABSTRACT

Inhalation of zinc oxide nanoparticles (ZnONP) has potential health impact. Because zinc ion may involve in the toxicity of ZnONP, we compared adverse effects of inhaled aerosolized ZnONP and zinc nitrate in mice. Aerosolized ZnONP and zinc nitrate were well-dispersed in the inhalation chamber. Inhalation of 0.86 mg/m(3) ZnONP or 1.98 mg/m(3) zinc nitrate for 5 h caused acute inflammation mainly at bronchioloalveolar junctions of lungs at 24-h post-exposure. Inhalation of ZnONP or zinc nitrate increased metallothionein expression in the epithelial cells of brochioloalveolar junction. While the effects on cytokines secretion in bronchoalveolar lavage were similar between ZnONP and zinc nitrate, only ZnONP increased lactate dehydrogenase activity. However, repeated exposure to 0.86 mg/m(3) ZnONP 5 h/day for 5 days failed to cause a similar adverse effect. Either single or repeated exposure to 0.86 mg/m(3) ZnONP increased activities of glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and creatine phosphokinase in blood. In contrast, exposure to zinc nitrate had no similar systemic effects. In human bronchial epithelial cells, ZnONP-induced interleukin-8 secretion was partially prevented by co-treatment with the Toll-like receptor 4 (TLR4) inhibitor. Furthermore, ZnONP-induced pulmonary inflammation was greater in wild-type mice than in TLR4-deficent mice. It appears that ZnONP-induced acute pulmonary inflammation partially depended on TLR4. In summary, we demonstrated the dose-responsive effects for inhalation of ZnONP and zinc nitrate in mice. The threshold of cytokines induction for inhalation of ZnONP for 5 h was 0.43 mg/m(3). The particulate characters of ZnONP might contribute to the systemic adverse effects and shall be evaluated for assessing its health impact in humans.


Subject(s)
Lung/drug effects , Metal Nanoparticles/toxicity , Pneumonia/chemically induced , Zinc Oxide/toxicity , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytokines/analysis , Dose-Response Relationship, Drug , Female , Humans , Lung/cytology , Lung/pathology , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Nitrates/administration & dosage , Nitrates/toxicity , Particle Size , Pneumonia/metabolism , Zinc Compounds/administration & dosage , Zinc Compounds/toxicity , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...